Quantcast
Channel: Comunità di Geologia - dolfrang
Viewing all 1069 articles
Browse latest View live

Article 0

$
0
0




Primi test calcolo epicentro

per eseguire i test è stato implementato il calcolo dell'epicentro date le coordinate delle stazioni e l'ora di attivo del terremoto di progetto
( dati ottenibli dalle stazioni sismiche )

Il prigramma permette partendo dai dati sperimentali ricavare l'epicentro, scartando automadicamente i dati che non appartengono al terremoto considerato.




Nell'esempio il pallino rosso dell'epicentro ipotizzato come test in blu appena visibile sotto a quello con ubicazione del terremoto calcolato di progetto.

Si potranno calcolare epicentri anche da 20 30 stazioni in contemporanea scartando i segnali non validi
In blu l'ubicazione delle stazioni, in questo caso 4


Errata corrige
la tabella dei dati T epicentro è errata i dati vanno letti in senso contrario




SHINTREX - GRAVIMETRI, MAGNETOMETRI , TOMOGRAGIA ELETTRICA

$
0
0

http://www.scintrexltd.com


Strumenti terra
Prodotti della terra Scintrex possono essere suddivise in tre categorie:

GRAVITY 

Metri relativi in quanto il CG-5 AutoGrav ™ Gravity Meter per la topografia o il gPhoneX per il monitoraggio.
Oppure metri assoluti come la Gravity Meter FG5-X o le A10 gravimetri portatili



MAGNETICS 

Il ENVI Cs è un magnetometro lettura continua ad alta sensibilità con GPS integrato di navigazione 
Il ENVI PRO Proton Magnetometro con GPS integrato o ENVI Proton Magnetometro



ELETTRICO

Il SARIS misuratore di resistività per le indagini elettrici poco profonde
O il IPR-12 inserito Polarizzazione di sistema per indagini più approfondite sia con un 3KWatt o 10 KWatt trasmettitore.

calcolo della VS di riferimento

$
0
0

di GEOSTRU

Consiglio di visitare questo sito , troverete molti programmi di ingegneria geofisica e geolofia molto utile  di cui molti anche free.


un interessante programma per il calcolo della  VS di riferimento

classificazione suoli ntc-2018


dinosaurhunter | Home

$
0
0

Benvenuti a DINOSAURHUNTER


Un Interessante sito sui dinosauri 

Oliver Ali Durante Il Lavoro sul campo Nel Bacino di Turfan, Cina.



This section Contiene Informazioni di Base.
Sono geologo con UN UN dottorato in paleontologia dei vertebrati e Sono Disponibili per il noleggio non da solo venire Direttore di scavo, ma also venire ricercatore, consulente scientifico, lavoratore museo, pianificatore Mostra, editore e autore. Si Prega di osare un'occhiata al mio curriculum, se Siete Interessati a mie qualifiche.


Ho scavando dinosauri nia Cinque Continenti e Nella maggior altera parte delle CONDIZIONI Variabili. I Miei Temi di Ricerca speciali Sono vertebrati Giurassico, gastroliti, vertebrato tafonomia, Trackways dinosauri, e diagenesi ossa. Dal 2005 Uno dei Miei Interessi Principali Sono i vertebrati Giurassico dall'Asia centrale. Un Certo Numero di stagioni di Campo Nel Xinjiang Hanno prodotto numerosi reperti Spettacolari.



tromografo - sismografo per sismologia

$
0
0
ultimi prototipi realizzati

tromografo sperimentale 

sismografo per sismologia

di Roberto Genovese
( stazione sismica di Barcellona Pozzo di Gotto ME)


Ottimo lavoro rispecchia i risultati della sperimentazione fatta fino ad Oggi dal nostro progetto:

1) baricentro basso frazie alla piastra basale pesante ( per aimentare la stabilità

2) spike's distanti tra loro per aumentare la stabilità del sistema

3) relativamente piccolo e basso per avere il minimo impatto con il vento

4) rapporto larchezza / altezza elevato per faranrire la massima stabilita

5) messa in bolla semplice e veloce con lle tre manopole

6) assenza di cavi di comunicazione che escono verticalmente del coperchio per tornare in sul terreno causa di vivrazioni random che alterano i dati acquisiti

7) bello e semplice da vedere

8) Aspetto dolido e rigido costituito da materiale pressofuso di spessore

9) anche se non è visibile internamente , il cablaggio è sicuramente curato ( conoscendo la precisione certosina di chi lo ha realizzato

10) la scatola offre una ottima protezione all'inquinamento elettro magnetico

le caratteristiche sono tali da poter essere utilizzato come tromografo - sismografo per sismologia.



Necessita come per tutti i progetti nuovi di una serie di test per verificare la risposta strumentale anche in sito come strumento trompgrafo sperimentale, in quanto deve superare standar superiori rispetto a quelli

richiesti da un normale sismografo per sismologia in quanto il calpo di acquisizione per i microtremori è 1000 1000.000 di volte ipiù sensibile a quello usato da una stazione sismica tradizionale per misurare l'ampiezza dei terremoti.

VISUALIZZARE IL VIDEO DEMO DEL TROMOGRAFO - sondaggi HVR metodo Nakamura _ frequenza di risonanza del terreno, frequenza di risonanza del fabbricato , zonazione sismica.



Caratteristiche del Theremino Adc24

per utilizzo in differenziae
misure microtremori e Sismologia
Per chi vuoe realizzare l'hardware è possibile scaricare gratuitamente i progetti hardware il firware per programmare il Pic, i listati dei software di acquisizione comprese le sorgenti
Il progett0 è open source e open hardware scaricabile gratuitamente dal sito di Theremino,com

dal sito di www,theremino.com  si legge:

Il Theremino Adc24 è basato sul convertitore AD7124-8 di Analog Devices. 


Si tratta di un convertitore Sigma Delta ad altissime prestazioni, progettato nel 2015, al culmine di decenni di esperienza di Analog Devices in questo campo. Oltre al basso rumore e alla grande flessibilità questo Adc consuma pochissimo, circa 900 micro Ampere. 

La velocità di campionamento è selezionabile in un campo molto vasto (da 10 fino a 19200
campioni al secondo) e sono disponibili 8 livelli di filtraggio, per scegliere il migliore compromesso tra velocità di risposta e riduzione del rumore. Le varie configurazioni di ingresso (Differenziale, Pseudo o Single Ended), permettono di collegare sensori di ogni tipo

Connettività e modularità - L'Adc24 è un modulo compatibile con il sistema Theremino, che è
intrinsecamente modulare e componibile. 
Questo permette di rivalutare le apparecchiature nel tempo e modificarle a piacere, aggiungendo nuovi moduli e nuove funzioni. Software, firmware, schemi e progetti sono completamente gratuiti e Open Source.

Applicazioni - Il Theremino Adc24 è finalizzato alla rilevazione e registrazione di segnali a bassa e media frequenza. La sua flessibilità e il suo rapporto segnale/rumore sono superiori a ogni altro strumento simile. 
Per cui è lo strumento ideale per la registrazione di microtremori (HVSR) e terremoti, ma anche di segnali provenienti da altri trasduttori come: potenziometri lineari per la rilevazione di spostamenti e fratture, celle di carico, bilance analitiche, misuratori di pressione, sensori di flessione, fotodiodi per illuminazioni debolissime, magnetometri, microbarometri, analizzatori di spettro a fenditura, termocoppie, misuratori di pH, datalogger, ecc...

Sincronizzazione - Se richiesta, la sincronizzazione con l'orario UTC si effettua con ricevitore GPS, collegato via USB. Il software che legge l'Adc, legge anche il GPS e unisce i due dati.

specifiche tecniche
Il parametro per poter valutare lo strumento non è il prezzo ma le specifiche che solo pochissime ditte pubblicano sui loro cataloghi

Alimentazione: 5 Vdc
Consumo di energia: < 5 millesimi di Watt (900 uA a 5 Volt)
Numero di canali: Da 1 a 16 canali a 24 bit (Σ-Δ) (8 differenziali, 15 pseudo o 16 single ended)
Range dinamico: 127 dB @ 100 SPS (con tre canali contemporanei e guadagno 1)
Campionamento: Configurabile da 1 a 16 canali “Differenziali”, “Pseudo” o “Single Ended” 
Sampling rate: Da 10 a 19200 campionamenti al secondo
Fondo scala: +/- 3.3 Vpp (Differenziale) oppure da 0 a 3.3 Volt (Pseudo e Single)
Adc step (x 1): 0.4 uV (Differenziale) - 0.2 uV (Pseudo e Single)
Adc step (x 128): 3.2 nV (Differenziale) - 1.6 nV (Pseudo e Single)
Impedenza di input: Praticamente infinita (> 100 mega ohm)
Corrente di input: Inferiore a +/- 4 nA
Corrente di input: Variazione con la temperatura +/-25 pA/°C
Tensione Massima: Da -0.3 Volt a +3.6 Volt (tensione massima applicabile agli ingressi)
Corrente Massima: +/-10 mA (corrente massima applicabile agli ingressi)
ESD Rating HBM: Human Body Model = 4 kVESD 
Rating FICDM: Field-Induced Charged Device Model = 1250 
VESD Rating MM: Machine Model = 400 V
Uscita 3.3 Volt: Fino a 300 mA, accuratezza (1%), stabilità (48 ppm/°C).
Uscita 2.5 Volt: Fino a 10 mA, accuratezza (0.2%), stabilità (2 ppm/°C tipica).
Uscita 1.6 Volt: Solo per polarizzare i sensori (accuratezza e stabilità pari al 3.3 Volt / 2).
Interfaccia dati: SPI a tre fili, QSPI™, MICROWIRE™ e DSP
Formato dati: Protocollo di Analog Devices (vedere data-sheet dello AD7124-8)
Velocità linea seriale: Da 30 baud a 5 mega baud
Precisione di tempo: Circa 500 uS o inferiore 
Temperatura: Da −40°C a +105°C (funzionale)
Temperatura: Da −65°C a +150°C (in magazzino) 
Dimensioni: 60 x 34 x 12 mm
Tutto il processo di amplificazione, filtraggio e digitalizzazione avvine nell'adconverter dell'ANALOG DEVICE
per cui le specifiche del sistema  di acquisizione sono indicate nei datascit
dell'adc AD71128-8 della Analog Devices.

Il theremino ha solo lo scopo d'inviare i dati digitali al PC e non influisce in alcun modo sulla qualità del segnale acquisito

Curve di livello con SketchUp

$
0
0

Curve di livello con SketchUp




nel sito si legge:

lavorare con le curve di livello è una delle cose che più detesto in assoluto.
Personalmente, ricavare da un file CAD inviato da terze parti delle curve di livello perlomeno utilizzabili, o ancora meglio trovarle già sistemate e pronte all’uso, per me è diventato un miraggio.
Layer multipli, altezze completamente messe a caso e chi più ne ha, più ne metta! Pensa che Clara, una delle lettrici del blog, mi parlava su Facebook di un file CAD che aveva ricevuto in cui le curve di livello erano addirittura state tagliate in alcuni punti per far posto all’edificato. Ah, i livelli, questi sconoscuti!
Spesso e volentieri, la soluzione migliore è proprio quella di armarsi di santa pazienza e disegnare le curve di livello da zero.
Per fortuna, Google ci viene in soccorso ancora una volta: lo sapevi che Google Earth integra anche i dati topografici del terreno? Beh, ovvio che lo sapevi!
continua sul sito http://ctrl-z.it


Cross Correlation AutoCorrelation 2D Pattern Identification

$
0
0
Cross Correlation


metodi sviluppati nel trattamento dei dati dei microtremori ....

Dal sito si legge:
Correlazione incrociata è un metodo standard per stimare il grado in cui sono correlati due serie. Consideriamo due serie x (i) e y (i) dove i = 0,1,2 ... N-1. La cross correlazione r al ritardo d è definito come

Dove mx e il mio sono i mezzi della serie corrispondente. Se quanto sopra è calcolato per tutti i ritardi d = 0,1,2, ... N-1 poi si traduce in una serie di correlazione incrociata pari al doppio della lunghezza della serie originale.
Vi è il problema di cosa fare quando l'indice nella serie è minore di 0 oppure maggiore o uguale al numero di punti. (id <0 o id> = N) I metodi più comuni sono di ignorare tali punti o assumendo la serie x ed y sono zero per i <0 e i> = N. In molte applicazioni di elaborazione di segnali della serie viene considerata circolare nel qual caso la gamma di indici sono "avvolti" nuovamente entro la portata, cioè: x (-1) = x (N-1), x (n +5) = x (5) etc

La gamma di ritardi d e quindi la lunghezza della serie di correlazione incrociata può essere inferiore a N, per esempio l'obiettivo può essere testare correlazione a ritardi brevi. Il denominatore nell'espressione sopra serve per normalizzare i coefficienti di correlazione tale che -1 <= r (d) <= 1, i limiti indicano correlazione massima e 0 indica nessuna correlazione. Una forte correlazione negativa indica una correlazione elevata ma dell'inverso una delle serie. .....continua nel sito


24 BIT reali - DISCK UFO - PROTOTIPO 10

$
0
0

 progetto

  TROMOGRAFO  24 Bit

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware.

Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”,


1° compleanno dell'Ufo


da alcuni anni il gruppo di progettazione  coadiuvato dai numerosi utenti ha sperimentato  diverse tipologie di hardware  partendo dai primi prototipi a 10 Bit realizzati con acquisitore Arduino, per poi passare  al 16 bit che ha dato ottimi risultati amplificato con gain 10.000 con appositi amplificatori fino a giungere  ai prototipi a 24 Bit di ultima generazione

software e schemi hardware online free

RENDERING DEL PROGETTO INIZIALE
(nella versione definitiva la cupola è stata ridotta da H= 8 cm a solo 2 cm , in questo modo si riduce l'effetto vento sulla strumentazione


In figura l'ultima generazione di tromografo sperimentale che rappresenta la risultante  delle sperimentazioni eseguite, sia dal punto di vista elettronico che meccanico è l'UFO ( il nome è legato alla sua forma somigliato agli oggetti volanti denominati  UFO. 


Quali sono i suoi componenti?

1) Master Theremino
2) scheda ADC 24 BIT - 16 CANALI, un adconverter molto molto sensibile con possibilità di amplificare ogni canale con un gain 1, 2, 4, 8, 16, 32, 64, 128 x  per cui il segnale non necessita essere amplificato ulteriormente. ( normalmente i tromografi non sono amplificati)


PC
l

+
THEREMINO master 
+
ADConverter a 24 BIT

+

GEOFONI
=
SISMOGRAFO \ TROMOGRAFO sperimentale 24 bit


L' U F O
La sua forma è dettata da motivi progettuali:

stabilità  
peso 
baricentro ribassato
larga base di appoggio
massima trasmissibilità del segnale ai sensori
aerodinamicità al vento
essenzialità e semplicità nelle sue forme
.......
per ultimo ma non meno importante
l'aspetto gradevole ed innovativo.

L' U F O 
e diventato realtà 
agosto 2017
 con cupola ribassata rispetto al progetto originario 
per avere meno impatto al vento 
e tasche laterali per zavorra e garantire la massima stabilità


Geofoni  utilizzati:

GEOFONI da 4,5 HZ 

( tre capsule geofoniche ) di cui 1 verticale e due orizzontali



la polarità dei geofoni positiva è normalmente 
contrssegnata da un +  da  O


CARATTERISTICHE DEL GEOFONOS S- 4, 5 N
Frequenza naturale (Hz)4,5  < ± 10,0%
Resistenza della bobina ()350 - 400 < ± 10%
Aperto smorzamento del Circuito0,5 -0,7  < ± 10 %
Attenuazione con shunt/
Circuito Aperto Sensibilità Tensione intrinseca (v / m / s)25 / 30 < ± 10 %

Usare geofoni con frequenza propria di 4,5 hz

Non utilizzare geofoni con frequenza propria inferiore a 4,5 hz, più costosi, difficili da settare, molto fragili, possibili derive del segnale con il tempo, che obbligano frequenti ritaraturae del sistema di acquisizione e con un tempo di smorzamento troppo lungo, sia per la strumentazione sperimentale che per quelle professionali.
I Geofoni da 2 hz sono da considerare inutili in quanto aumentano la sensibilità dello strumento ci circa 6 -10 volte , quando lo strumento ha un preamplificatore da 1 a 128 unita.
Per collegare un geofono da  2 hz comporterebbe una inutile riduzione di  8 unità di gain e generare le problematiche sopra accennate  di minor stabilità del sistema nonchè probabili modifiche dell'Hardware theremino.
ATTENZIONE : NON COLLEGARE GEOFONI DA 1 - 2 HZ AL THEREMINO SENZA INTERPELLARE IL PROGETTISTA, SI POTREBBERO PROVOCARE DANNI ALLA STRUMENTAZIONE .
DAL PROGETTO INIZIALE  SI è RIBASSATA LA CUPOLA A 2 CM DI SPESSORE PER RIDURRE ULTERIORMENTE L'IMPATTO DELLO STRUMENTO CON LA BREZZA.









Per chi desidera avere lo strumento montato, provato, con aspetto innovativo con elevata stabilità e basso grado di impatto con il vento è possibile richiederlo a http://www.thereminoshop.com/contact/- To contact the European warehouse: Warehouse European


VISUALIZZARE IL VIDEO DEMO DEL TROMOGRAFO - sondaggi HVR metodo Nakamura _ frequenza di risonanza del terreno, frequenza di risonanza del fabbricato , zonazione sismica.




Caratteristiche del Theremino Adc24
per utilizzo in differenziae
misure microtremori e Sismologia
Per chi vuoe realizzare l'hardware è possibile scaricare gratuitamente i progetti hardware il firware  per programmare il Pic, i listati dei software di acquisizione comprese le sorgenti
Il progett0 è open source e open hardware scaricabile gratuitamente dal sito di Theremino,com


dal sito di www,theremino.com  si legge:

Il Theremino Adc24 è basato sul convertitore AD7124-8 di Analog Devices. 

Si tratta di un convertitore Sigma Delta ad altissime prestazioni, progettato nel 2015, al culmine di decenni di esperienza di Analog Devices in questo campo. Oltre al basso rumore e alla grande flessibilità questo Adc consuma pochissimo, circa 900 micro Ampere. 

La velocità di campionamento è selezionabile in un campo molto vasto (da 10 fino a 19200
campioni al secondo) e sono disponibili 8 livelli di filtraggio, per scegliere il migliore compromesso tra velocità di risposta e riduzione del rumore. Le varie configurazioni di ingresso (Differenziale, Pseudo o Single Ended), permettono di collegare sensori di ogni tipo

Connettività e modularità - L'Adc24 è un modulo compatibile con il sistema Theremino, che è
intrinsecamente modulare e componibile. 
Questo permette di rivalutare le apparecchiature nel tempo e modificarle a piacere, aggiungendo nuovi moduli e nuove funzioni. Software, firmware, schemi e progetti sono completamente gratuiti e Open Source.

Applicazioni - Il Theremino Adc24 è finalizzato alla rilevazione e registrazione di segnali a bassa e media frequenza. La sua flessibilità e il suo rapporto segnale/rumore sono superiori a ogni altro strumento simile. 
Per cui è lo strumento ideale per la registrazione di microtremori (HVSR) e terremoti, ma anche di segnali provenienti da altri trasduttori come: potenziometri lineari per la rilevazione di spostamenti e fratture, celle di carico, bilance analitiche, misuratori di pressione, sensori di flessione, fotodiodi per illuminazioni debolissime, magnetometri, microbarometri, analizzatori di spettro a fenditura, termocoppie, misuratori di pH, datalogger, ecc...

Sincronizzazione - Se richiesta, la sincronizzazione con l'orario UTC si effettua con ricevitore GPS, collegato via USB. Il software che legge l'Adc, legge anche il GPS e unisce i due dati.


specifiche tecniche
Il parametro per poter valutare lo strumento non è il prezzo ma le specifiche che solo pochissime ditte pubblicano sui loro cataloghi
Alimentazione: 5 Vdc
Consumo di energia: < 5 millesimi di Watt (900 uA a 5 Volt)
Numero di canali: Da 1 a 16 canali a 24 bit (Σ-Δ) (8 differenziali, 15 pseudo o 16 single ended)
Range dinamico: 127 dB @ 100 SPS (con tre canali contemporanei e guadagno 1)
Campionamento: Configurabile da 1 a 16 canali “Differenziali”, “Pseudo” o “Single Ended” 
Sampling rate: Da 10 a 19200 campionamenti al secondo
Fondo scala: +/- 3.3 Vpp (Differenziale) oppure da 0 a 3.3 Volt (Pseudo e Single)
Adc step (x 1): 0.4 uV (Differenziale) - 0.2 uV (Pseudo e Single)
Adc step (x 128): 3.2 nV (Differenziale) - 1.6 nV (Pseudo e Single)
Impedenza di input: Praticamente infinita (> 100 mega ohm)

Corrente di input: Inferiore a +/- 4 nA

Corrente di input: Variazione con la temperatura +/-25 pA/°C

Tensione Massima: Da -0.3 Volt a +3.6 Volt (tensione massima applicabile agli ingressi)

Corrente Massima: +/-10 mA (corrente massima applicabile agli ingressi)

ESD Rating HBM: Human Body Model = 4 kVESD 

Rating FICDM: Field-Induced Charged Device Model = 1250 

VESD Rating MM: Machine Model = 400 V

Uscita 3.3 Volt: Fino a 300 mA, accuratezza (1%), stabilità (48 ppm/°C).

Uscita 2.5 Volt: Fino a 10 mA, accuratezza (0.2%), stabilità (2 ppm/°C tipica).

Uscita 1.6 Volt: Solo per polarizzare i sensori (accuratezza e stabilità pari al 3.3 Volt / 2).

Interfaccia dati: SPI a tre fili, QSPI™, MICROWIRE™ e DSP

Formato dati: Protocollo di Analog Devices (vedere data-sheet dello AD7124-8)

Velocità linea seriale: Da 30 baud a 5 mega baud

Precisione di tempo: Circa 500 uS o inferiore 

Temperatura: Da −40°C a +105°C (funzionale)

Temperatura: Da −65°C a +150°C (in magazzino) 

Dimensioni: 60 x 34 x 12 mm



test fornito dal progettista


Manuale theremino adc 24 bit

Conformità: Nessuna certificazione, è un componente quindi non certificabile


Tutto il processo di amplificazione, filtraggio e digitalizzazione avvine nell'adconverter dell'ANALOG DEVICE
per cui le specifiche del sistema  di acquisizione sono indicate nei datascit
dell'adc AD71128-8 della Analog Devices.

Il theremino ha solo lo scopo d'inviare i dati digitali al PC e non influisce in alcun modo sulla qualità del segnale acquisito


PROGETTO SISMOGRAFO 12 CANALI 24 bit - gain 128

$
0
0
PROGETTO
SISMOGRAFO 12 CANALI  ( espandibile )
24 bit - gain 128
per prove Masw, Remi, sismica a rifrazione, riflessione,  prove in foro - low - low cost

foto di Sette prototipo 16 bit


Dopo una pausa  di molti mesi è stata ripresa la progettazione e la realizzazione del software di acquisizione sel sismogrado 12 canali espandibile in futiro a 24 e più canali.
Il progetto ha subito delle modifiche in quanto si è abbandonato l'uso dell'adc 16 bit con amplificatori con gain  elevato fisso per passare al l'adc 24 bit, prossimamrnte ci saranno ancora modifiche sull'hardware di acquisizione.


Una delle prime acquisizioni del sismtema 12 canali 24 bit gain 1 x , stesa sismica 70 metri, battuta con mazza da 6 kg su affioramento granitico alterato 

Questa è solo una fase intermedia in quanto l'hardware in futuro subirà ancora dei miglioramenti e potenzialmenti.

La possibilità di sfruttare l'Adc 24 bit permette di ottenere uno strumento con maggiore dinamica rispetto alla precedente versione a 16 bit, il gain aggiuntivo permetterà di aumentare ulteriormente  la sensibilità di 128 unità se ci riferiamo ad un normale adc con gain 1 x massio 2 4 8 x utilizzato dalla maggior parte degli strumenti in commercio, a parte qualcuno di recente realizzazione che ha seguito le orme di Theremino con gain leggermente inferiore a 64 x invexe dei 128 x usato dal nostro prototipo.



Si è pensato inizialmente la messa apunto hardware e software  la sezione per eseguire  le indagini MASW e/o similari in quanto  tutte le opzioni hardware sono già implementate nel progetto, tra queste il trigger che per il momento sfrutta il primo o l'utimo geofono come fonte di start ( oppure un geofono aggiuntivo), prossimamente verrà sostituito con un trigger piezzoelettrico molto più preciso e rapido nella risposta.


Per il MASW il trigger  ha solo la funzione di avviare l'acquisizione, non ha finalità di determinare il tempo di percorrenza tra il punto di battuta e i rispettivi geofoni  come invece avviene nella sismica r arifrazione.

I geofoni  utilizzati sono a 24 bit 28,8 vol/m/sec , anche se si potrebbero usare geofoni più sensibili , non consigliati in quanto grazie al gain utilizzato il segnale potrebbe adare in saturazione con geofoni ad elevata sensibilità.  
In tal caso sarebbe necessario  diminuire di 8 volte la sensibilita strumentale da 128 a soli 8 - 16 x, per compnsare la maggior sensibilità srumentale,  soluzione inutile e costosa in quanto acquistare geofoni più sensibili, costosi, difficili da gestire fragili comporterebbe una riduzione della sensibilità strumentale.

Rispetto al precedente progetto sono anche cambiati i settaggi di hal e la modalità di acquisizione passando da un sistema "single" + 12 amplificato autocostruiti ad un sistema "pseudo differenziale", in futuro sarà preso in considerazione in alternativa anche il sistema "differenziale" con prestazioni leggermente  migliori, per sistemi a 12  - 16 - 24 canali. o più...


Il cavo per il differenziale che pseudo differenziale è costituito da un numero di poli doppio dei canali attivabili + una calza interna, se avanzano dei cavi, questi si possono usare come cavi di prolunga.

Nel caso di sistema a 12 - 16 canali consiglio realizzare due cavi da 6 - 8 canali in modo che la strumentazione sia posizionata al centro dei due cavi per dimezzare la distamza tra i geofoni più esterni all'adconverte, minore è tale distanza minore sono i rumori elettromagnetici che possono entrare del sistema, anche se si sono prese tutte le cautele del caso per schermare il sistema di acquisizione.

Man mano andranno avanti i lavori questa pagina web verrà aggiornata, per chi desidera partecipare al progetto è possibile dare la propria disponibilità che sarà riservata, al massimo, ad un massimo di 5 persone.

Cross Correlation AutoCorrelation 2D Pattern Identification

$
0
0
Cross Correlation


metodi sviluppati nel trattamento dei dati dei microtremori ....

Dal sito si legge:
Correlazione incrociata è un metodo standard per stimare il grado in cui sono correlati due serie. Consideriamo due serie x (i) e y (i) dove i = 0,1,2 ... N-1. La cross correlazione r al ritardo d è definito come

Dove mx e il mio sono i mezzi della serie corrispondente. Se quanto sopra è calcolato per tutti i ritardi d = 0,1,2, ... N-1 poi si traduce in una serie di correlazione incrociata pari al doppio della lunghezza della serie originale.
Vi è il problema di cosa fare quando l'indice nella serie è minore di 0 oppure maggiore o uguale al numero di punti. (id <0 o id> = N) I metodi più comuni sono di ignorare tali punti o assumendo la serie x ed y sono zero per i <0 e i> = N. In molte applicazioni di elaborazione di segnali della serie viene considerata circolare nel qual caso la gamma di indici sono "avvolti" nuovamente entro la portata, cioè: x (-1) = x (N-1), x (n +5) = x (5) etc

La gamma di ritardi d e quindi la lunghezza della serie di correlazione incrociata può essere inferiore a N, per esempio l'obiettivo può essere testare correlazione a ritardi brevi. Il denominatore nell'espressione sopra serve per normalizzare i coefficienti di correlazione tale che -1 <= r (d) <= 1, i limiti indicano correlazione massima e 0 indica nessuna correlazione. Una forte correlazione negativa indica una correlazione elevata ma dell'inverso una delle serie. .....continua nel sito


Article 0

Manuale tromografo

$
0
0
Manuale tromografo
dati di acquisizione
durata  taratura (secondi)

Nel menu configurazione del programma di acquisizione è implementato il menu di taratura con la funzione di correggere la non esatta verticalità dello strumento e per i precedenti prototipi tromografi a 16 bit per azzerare l'offset.

Con i tromografi a 24 bit ed Ufo si è potuto sperimentale che l'azzeramento non è necessario il quanto la staratura dell'offset tra i tre canali è praticamente nulla per cui tale funzione ha solo lo scopo di correggere la staratura dovuta alla non perfetta verticalità dello strumento .

1) Nel caso di molto rumore ambientale, esempio nelle vicinanze di una strada ad intenso traffico , zone rumorosi per la vicinanza di fabbriche, motori, pompe vento conviene settare taratura = 0 secondi.
Eseguire l'azzeramento in presenza di rumori ambientali si otterrebbe un offset meno preciso rispetto a quello strumentale rispetto all'errore dovuto dalla non perfetta verticalità dello strumento.


2) Nel caso opposto in siti silenziosi si può attivare la taratura in quanto permette di correggere l'ofset in presenza di non perfetta verticalità strumentale mentre in assenza di rumori antropici e ambientali l'offset Hardware non viene alterato
3) Nei casi intermedi:
caso a con rumori antropici che si ripetono con una ripetibilità; di 10 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
- caso a con rumori antropici che si ripetono con una ripetibilità ; di 20 secondi esempio 2 - 3 auto minuto) consiglio di attivare 20 secondi
Nessun testo alternativo automatico disponibile.
- caso a con rumori antropici che si ripetono con una ripetibilità > di 30 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
Per intervalli maggiori usare tempi di taratura più lunghi

Una volta selezionato il tempo accertarsi che che non siano transitando auto persone, raffiche di vento ecc e attivare l'acquisizione, nella fase di taratura è necessario avere lo strumento almeno a 5 m di distanza usando prolunghe Usb e restare immobili fino a quando non è terminata la procedura di taratura, osservato il segnale per qualche secondo, allontanarsi di almeno 20 - 30 metri dallo strumento, prendere l'ora di avvio per prevedere quando l'acquisizione terminerà.
Si consiglia di usare un cavo di prolunga del cavo usb schermato e certificato di ottima qualità  per allontanare lo strumento dal pc di almeno 5-6 metri almeno non usare più di un cavo di prolunga, provare anche con cavi di prolunga da 10 metri.

Una volta avviata la taratura è è possibile allontanarsi di  qualche metro ed osservare il segnale a distanza per ridurre al massimo errori di taratura.

Generare rumori a registrare rumori in fase di taratura potrebbe comportare errori di offset, in tal caso è meglio non eseguire l'operazione mettendo o come durata dell'operazione oppure avviarla in un momento in cui non ci sia traffico veicolare. 

PROGETTO SISMOGRAFO 12 CANALI 24 bit - gain 128

$
0
0
PROGETTO
SISMOGRAFO 12 CANALI  (espandibile)
24 bit - gain 1 2 4 8 16 32 64 128 x , pilotabile da software

per prove Masw, Remi, sismica a rifrazione, riflessione,  prove in foro - low - low cost

foto di Sette prototipo 16 bit


Dopo una pausa  di molti mesi è stata ripresa la progettazione e la realizzazione del software di acquisizione sel sismogrado 12 canali espandibile in futiro a 24 e più canali.

Il progetto ha subito delle modifiche in quanto si è abbandonato l'uso dell'adc 16 bit con amplificatori con gain  elevato fisso per passare al l'adc 24 bit, prossimamrnte ci saranno ancora modifiche sull'hardware di acquisizione.


Una delle prime acquisizioni del sismtema 12 canali 24 bit gain 1 x , stesa sismica 70 metri, battuta con mazza da 6 kg su affioramento granitico alterato 

Questa è solo una fase intermedia in quanto l'hardware in futuro subirà ancora dei miglioramenti e potenzialmenti.

La possibilità di sfruttare l'Adc 24 bit permette di ottenere uno strumento con maggiore dinamica rispetto alla precedente versione a 16 bit, il gain aggiuntivo permetterà di aumentare ulteriormente  la sensibilità di 128 unità se ci riferiamo ad un normale adc con gain 1 x massio 2 4 8 x utilizzato dalla maggior parte degli strumenti in commercio, a parte qualcuno di recente realizzazione che ha seguito le orme di Theremino con gain leggermente inferiore a 64 x invexe dei 128 x usato dal nostro prototipo.





Si è pensato inizialmente la messa apunto hardware e software  la sezione per eseguire  le indagini MASW e/o similari in quanto  tutte le opzioni hardware sono già implementate nel progetto, tra queste il trigger che per il momento sfrutta il primo o l'utimo geofono come fonte di start ( oppure un geofono aggiuntivo), prossimamente verrà sostituito con un trigger piezzoelettrico molto più preciso e rapido nella risposta.

Per il MASW il trigger  ha solo la funzione di avviare l'acquisizione, non ha finalità di determinare il tempo di percorrenza tra il punto di battuta e i rispettivi geofoni  come invece avviene nella sismica r arifrazione.



I geofoni  utilizzati sono a 24 bit 28,8 vol/m/sec , anche se si potrebbero usare geofoni più sensibili , non consigliati in quanto grazie al gain utilizzato il segnale potrebbe adare in saturazione con geofoni ad elevata sensibilità.  

In tal caso sarebbe necessario  diminuire di 8 volte la sensibilita strumentale da 128 a soli 8 - 16 x, per compnsare la maggior sensibilità srumentale,  soluzione inutile e costosa in quanto acquistare geofoni più sensibili, costosi, difficili da gestire fragili comporterebbe una riduzione della sensibilità strumentale.



Rispetto al precedente progetto sono anche cambiati i settaggi di hal e la modalità di acquisizione passando da un sistema "single" + 12 amplificato autocostruiti ad un sistema "pseudo differenziale", in futuro sarà preso in considerazione in alternativa anche il sistema "differenziale" con prestazioni leggermente  migliori, per sistemi a 12  - 16 - 24 canali. o più...


Il cavo per il differenziale che pseudo differenziale è costituito da un numero di poli doppio dei canali attivabili + una calza interna, se avanzano dei cavi, questi si possono usare come cavi di prolunga.

Nel caso di sistema a 12 - 16 canali consiglio realizzare due cavi da 6 - 8 canali in modo che la strumentazione sia posizionata al centro dei due cavi per dimezzare la distamza tra i geofoni più esterni all'adconverte, minore è tale distanza minore sono i rumori elettromagnetici che possono entrare del sistema, anche se si sono prese tutte le cautele del caso per schermare il sistema di acquisizione.

Man mano andranno avanti i lavori questa pagina web verrà aggiornata, per chi desidera partecipare al progetto è possibile dare la propria disponibilità che sarà riservata, al massimo, ad un massimo di 5 persone.


 ---------------------------------------


Minime sono le differenze hardwarw tra la versione masw, remi, sismica a rifrazione, sismica a rifelssione prove in foro., ( le principali differenze  sono prevalentemente software di aceuisizione e gestione file , ppre la rifrazione e rigelssione sarà utile sostituire  il master con un nuovo hardware + veloce in fase di realizzazione.

PRE REALIZZARE IL SISMOGRAFO PROVE MASW :

frequenza di campionamento 500 hz


durata acauisizione 0,5 , 1 2 4 secondi

gain condigliato 1-32 a seconda lella lunghezza dello stendimento e della tipologia del suolo che si vuole indagare.


Numero di canali 12 espandinili in futuro  a 16-24 canali da 4,5 volt 28,8 v/m/s  di sensibilità - meglio du caci a 6 geofoni .


Trigger piezoelettrico o mevvanico
Pretrigger 1 -100 msec modificabile

Geofoni 12 .0


Cavo/i interasse 3 - 6 metri in funzione della lunghezza della stesa massima che si desidera ottenere ( relativamente semplice da realizzare , in futuro verrà eliminato)
cavo di battuta esterna

Avvolgitori medio piccoli,


Mazza da 6 - 8 -12 15 kg
a seconda delle esigenze





Piastra in ferro e il lega da alluminio  di diametro pari a 25 cm , spessore 3 cm circa.

in alternativa una flangia piatta  cieca del diametro di 25 cm , spessore 2-3 cm


Baule per il trasporto

NO batterie




come configurare Hal


dal manualr adc 24 bir THEREMINO - PDF

In questa prima fase del progetto di consigòia di collegare il cavo /cavi a 12 - 6 canali x2 in modalità " pseudo differenziale , si possono connettere fino a 15 geofoni ( consigliati 12) secondo lo schema sopra allegato, si consiglia di leggere il manuale online di theremino 24 bit., attenzione occorre anche posizionare il ponticloo secondo lo schema.

Il cavo si consiglia di realizzarlo in due spezzoni da 6 canali , nel centro verrà posizionato lo strumento.

I due cavi dovranno essere costituiti da 2 matasse a 12 pin più calza , di buoma qualità ( costo meno di 2 euro/metro, servono anche 12 connettori a valve per collegare le pinzette dei geofoni.

L'operazione di montaggio ache se subito potrà apparire conplessa una persona con una minima esperienza nel saldare potrà realizzarla velocemente.

Per ogni connettore occorre seconso un ordine crescente saldare il polo 1 e 2 alle due valve , i n° pari alla valva più larga del connettor, i numeri dispari a quella più stretta per il canale 1 A e 1B, ripetere le meesime operazioni per pi canale 2A 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B.

Ripetere le stesse operazioni per il cavo 2 , i que cavi dovranno essere uguali.

Alle estremità interne del cavo i singoli pin dei cavi dovranno essere salfati ad un connettore fipo LPT1 facili da trovare in commercio e facili da saldare.

Su un lato della scatola che conterrà l'Hardware dovranno essere fissate altri 2 connettori da pannello LPT1 , da collegare con cavetti tuistati dupoin al modulo 24 bit Teremino, la calza proveniente dai 2 cavi dovra essere collegata al pin 1 del filare adc 24 bit più esterno.

I dupoint secondo l'ordine prestabilito saranno collegati ai pin del filare centrale ed interno dell'adc come in fihura precedentemente allegata . stessa cosa per i dupoint ptovenienti sal secondo cavo proveniente dal cavo N° 2.


Da una tesi progetto sismografo theremino, in questo caso esiste solo un connettore in quanto si è utilizzato il cavo di uno strmento professionale a 12 canali- notare  la semplicità dell'assemblaggio e la limitatezza di circuiti stampati, meno componenti elettronici si udano e migliori saranno i risultati in termini di segnale e di costi.

La scatola che contiene l'ardware deve essere sufficientemente grande per contenere i cavi, nella foto si vede che xhe 24 bit è collegato il master che ha la funzione di trasmettere i dati acquisiti al PC o tablet windows.

Notare la semplicità e facilità di assemblaggio del sistema e il cavo usb che collega il master con il pc.

Il sistema viene alimentato dal PC - consumo estremamente basso, per cui basta pesanti batterie da 12 /25 vol da auto per alimentare la strumentazione !!!!!.


12-10-2015

CONSIGLI SULL'USO DEI TRIGGER STARTER

dalle prove fatte scarterei i geofoni perché hanno una elevata inerzia per superare il valore di soglia impostato, è possibile a livello di software è possibile ricostruire il tempo To della mazzata ma in condizioni di rumore ambientale o per segnali con ampiezza simile ai rumori ambientali è possibile ottenere risultati errati.

STARTER GEOFONICO

SI SCONDIGLIA DI NON UTILIZZARE  I GEOFONI COME STARTER ANCHE CON STRUMENTAZIONI PROFESSIONALI, provate con un geofono e poi con uno starter meccanico e controntate i tempi di arrivo con un geofono medio- lontano......

STARTER MECCANICO
----------------------------------------
Un eventuale starter meccanico va collegato tra SIGNAL e GND e SENZA collegare il +5V
Poi si deve impostare il PIN come DigIn-PU (il PU vuol dire PULL-UP e ci pensa il Theremino a dare la tensione che serve all’interruttore)
  
STARTER PIEZOELETTRICO
----------------------------------------
Consiglio questa versione perché costa poco e da un segnale forte e pulito.
In questo caso il segnale partirebbe da numeri bassi (da 5 a 20) e sicuramente sotto al 500.
E salirebbe a 800 o 900 in tempo brevissimo ad ogni mazzata.

Adattatori per i sensori piezoelettrici
da theremino.com

Gli adattatori che proponiamo sono semplici da costruire e funzionano meglio dei molti schemi che si trovano su internet.
Attenzione: Il principio di funzionamento dei nostri sensori non è lo stesso di quelli delle batterie commerciali. I segnali non sono intercambiabili. 
Per ottenere le massime prestazioni, i nostri sensori non trasmettono un segnale audio, ma un valore proporzionale alla pressione esercitata. 
Questo ci ha permessi di ottenere un controllo del suono e una dinamica, superiori a quelli delle batterie elettroniche commerciali, con i classici Pad non alimentati.

continua nel sito

per ulteriori informazioni si rimanda alla seguente interessantissima pagina
http://www.theremino.com/hardware/inputs/piezoelectric-sensors#adapters

Attenzione a girare il dischetto piezo fisicamente nel senso giusto in modo che dia il segnale al fronte di salita del colpo e non al fronte di discesa, che arriverebbe qualche millisecondo dopo.

Manuale tromografo

$
0
0
Manuale tromografo
dati di acquisizione
durata  taratura (secondi)

Nel menu configurazione del programma di acquisizione è implementato il menu di taratura con la funzione di correggere la non esatta verticalità dello strumento e per i precedenti prototipi tromografi a 16 bit per azzerare l'offset.

Con i tromografi a 24 bit ed Ufo si è potuto sperimentale che l'azzeramento non è necessario il quanto la staratura dell'offset tra i tre canali è praticamente nulla per cui tale funzione ha solo lo scopo di correggere la staratura dovuta alla non perfetta verticalità dello strumento .

1) Nel caso di molto rumore ambientale, esempio nelle vicinanze di una strada ad intenso traffico , zone rumorosi per la vicinanza di fabbriche, motori, pompe vento conviene settare taratura = 0 secondi.
Eseguire l'azzeramento in presenza di rumori ambientali si otterrebbe un offset meno preciso rispetto a quello strumentale rispetto all'errore dovuto dalla non perfetta verticalità dello strumento.


2) Nel caso opposto in siti silenziosi si può attivare la taratura in quanto permette di correggere l'ofset in presenza di non perfetta verticalità strumentale mentre in assenza di rumori antropici e ambientali l'offset Hardware non viene alterato
3) Nei casi intermedi:
caso a con rumori antropici che si ripetono con una ripetibilità; di 10 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
- caso a con rumori antropici che si ripetono con una ripetibilità ; di 20 secondi esempio 2 - 3 auto minuto) consiglio di attivare 20 secondi
Nessun testo alternativo automatico disponibile.
- caso a con rumori antropici che si ripetono con una ripetibilità > di 30 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
Per intervalli maggiori usare tempi di taratura più lunghi

Una volta selezionato il tempo accertarsi che che non siano transitando auto persone, raffiche di vento ecc e attivare l'acquisizione, nella fase di taratura è necessario avere lo strumento almeno a 5 m di distanza usando prolunghe Usb e restare immobili fino a quando non è terminata la procedura di taratura, osservato il segnale per qualche secondo, allontanarsi di almeno 20 - 30 metri dallo strumento, prendere l'ora di avvio per prevedere quando l'acquisizione terminerà.
Si consiglia di usare un cavo di prolunga del cavo usb schermato e certificato di ottima qualità  per allontanare lo strumento dal pc di almeno 5-6 metri almeno non usare più di un cavo di prolunga, provare anche con cavi di prolunga da 10 metri.

Una volta avviata la taratura è è possibile allontanarsi di  qualche metro ed osservare il segnale a distanza per ridurre al massimo errori di taratura.

Generare rumori a registrare rumori in fase di taratura potrebbe comportare errori di offset, in tal caso è meglio non eseguire l'operazione mettendo o come durata dell'operazione oppure avviarla in un momento in cui non ci sia traffico veicolare. 

PROTOTIPO 5 - tromografo sperimentale per HVSR

$
0
0
MANUALE di MONTAGGIO - tromografo sperimentale per HVSR

progetto superato dal prototipo 8  e 9 e 10

prototipo 10 - tromografo 

sismografo UFO


tromografo sperimentale - prototip0 9
24 bit per HVSR

tromografo sperimentale bis
24 bit per HVSR



Che cosa occorre fare per montare un acquisitore dati a 1- 6 canali 
per sismologia geofisica , hvsr & microtremori

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware.
Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”,

software e schemi hardware online free




Tra tutte le meccaniche presentate  come prototipo 1,2,3,4,5 questo è quello che consiglio di realizzare in quanto oltre ad essere compatto non ha bisogno di piastra, è parzialmente impermeabile ( resistente a pioggia debole e alla sabbia) e la scatola ha una certa rigidità e robustezza a norme CE utilizzata anche per impianti elettrici ad alte tensioni.

L'idea è banale, i risultari molto meno !!! ....



MANUALE  TROMOGRAFO SPERIMENTALE - versione 5


E' consigiabile sostituire gli amplificatori con l'adc  24 bit che oltre a permettere una maggiore dinamica riduce il prezzzo di acquisto dell'elettronica del progetto
come da

Molti lettori mi chiedono di elencare il materiale necessario per realizzare il sismografo 1 - 6 canali per sperimentale per SISMOLOGIA, GEOFISICA E MICROTREMORI, questa pagina contiene foto, link, modalità di assemblaggio, schemi e quanto occorre per realizzare il progetto.
Per eventuali chiarimenti ed integrazioni scrivere a dolfrang@libero.it o inserire le domande  nell'apposito spazio a fine pagina.




Il sistema utilizza un ACQUISITORE DATI 

Il modulo master si collega ad un host PC tramite il connettore usb.
Una singola porta usb fornisce 500 mA di corrente per le schede collegate alla catena; puoi usare un cavo a Y e alimentare da due porte usb per raddoppiare la potenza disponibile a 1000 mA.
Questa alimentazione è più che sufficiente per la maggior parte delle applicazioni. Comunque, per applicazioni particolari o se si preferisce usare sorgenti di alimentazione alternative alle porte USB, è previsto il punto di connessione per una sorgente di alimentazione esterna.
N° 3 AMPLIFICATORI con gain 10000 smd MEGLIO se SMD
( per avere le massime prestazioni si condiglia la versione MSD) 

E' consigiabile sostituire gli amplificatori con l'adc  24 bit che oltre a permettere una maggiore dinamica riduce il prezzzo di acquisto dell'elettronica del progetto

amplifica i segnali in tensione di 10000 volte. Tramite l'aggiunta di un resistore esterno è possibile variare il guadagno portandolo a 100, 300, 1000, 3000 (o qualsivoglia valore nel range).
Il chipset impiegato LT6014, dà basso rumore soprattutto nella banda a basse frequenze 1Hz - 5Hz, dove l'output del segnale dei geofoni è più carente.

non più usato e sostituito da adc 24 bit

CAVO di collegamento "tipo stampante" USB
Lunghezza: 1,8 metri. Idoneo per collegare Theremino Master al PC.
Connettore tipo A: lato PC.
Connettore tipo B: lato periferica.

è consigliato anche un cavo di prolunga da  5- 10 - 15 metri per allontanare il pc dall'acquisitore -trasduttore ( meglio se in unico pezzo )  vedi link - cavo usb di prolunga da 15 metri


GEOFONI da 4,5 HZ ( tre capsule geofoniche ) di cui 1 verticale e due orizzontali
a partire da 30 $ l'uno comprese le spese di spedizione




CARATTERISTICHE DEL GEOFONOS S- 4, 5 N
Frequenza naturale (Hz)4,5  < ± 10,0%
Resistenza della bobina ()350 - 400 < ± 10%
Aperto smorzamento del Circuito0,5 -0,7  < ± 10 %
Attenuazione con shunt/
Circuito Aperto Sensibilità Tensione intrinseca (v / m / s)25 / 30 < ± 10 %

Non utilizzare geofoni con frequenza propria inferiore a 4,5 hz, più costosi, difficili da settare, molto fragili, possibili derive del segnale con il tempo, che obbligano frequenti ritaratura del sistema di acquisizione  e con un tempo di smorzamento troppo lungo, sia per la strumentazione sperimentale che per quelle professionali.
 N° 3 ( 1 verticale - 2 orizzontali ) 



Presso un negozio di ferramenta:
  
3 bulloni da 8 mm lunghi 10, da usare come bulloni spike's

e 15  rondelle 10 dadi circa per fissare il cubo e la scatola rigidamente  ai tre punzoni






1 bullone a testa tonda da inserire nel buco centrale del cubo tipo dal basso verso l'alto di lunghezza sufficiente circa 6,5 - 7 cm da verificare se troppo lungo non si chiude più la scatola

4 viti da 2 mm o inferiore lunghe 1,5 cm per dissare il theremino sul cubo di legno

n° 3 +3 inserti filettati per legno



 



Presso falegname   un cubo di legno 13 x 13 x 5, 
in sperimentazione  18 x 18 x 7 circa , misure da definire meglio. 
legno duro tipo frassino, noce,ciliegio, meno bene larice, no pino e abete e legni fibbrosi con nodi.

oppure un amico con disponibilità un trapano a colonna e 1 fresa da 3 euro fi 26 mm e punta del 9 mm





Scatola Gwiss da 14 x 19 x 7  per cubo 13 x 13 x 5  acquistabile presso negozio sottocasa grossista di materiale elettrico oppure altra scatola anche di alluminio ( in tal caso le misure del cubo possono essere diverse (un cm in meno della larghezza interna e di forma quadrata, e lunghezza minima = larghezza del cubo + 4 cm per permettere l'alloggiamento del Theremino e dei mini amplificatori)




oppure scatola gevis da 20 x 24 x 10  per cubo 18 x18 x 7 in sperimentazione ( dimensioni ancora da verificare ) 



Altre notizie



Online sono presenti gli schemi elettrici per poter realizzare sia l'acquisitore che gli amplificatori, ma il costo sarebbe più costoso del kit e difficilmente realizzabile per la tipologia dei componenti  SMD
In tal caso non modificare il progetto pena una resa inferiore dell'hardware.


Per l'assemblaggio necessitano solo 10  minuti di tempo, un cacciavite e un trapano ( farsi aiutare sa un amico pratico nel fai da te - anche a questo servono gli amici.... )

Nel caso di terreni soffici conviene aggiungere anche gli inserti filettati a base larga in modo che parte del bullone venga infisso e il deficit di portanza venga assorbito dal maggior diametro della base dell'inserto filettato, magari bloccato da un dado.

La testa del bullone deve coincidere con la parte alta del cubo di legno separata da una rondella, altra rondella e dado nella parte bassa del cubo ben stretto, inserire i tre spyke's- bulloni nei tre buchi fatti sul fondo della scatola, una ultima rondella e dado per fissare il contenitore e per ultimo un inserto filettato per aumentare la portanza in caso di terreni soffici o per livellare lo strumento in caso di terreni duri non in piano.
( Non fresare la parte finale del bullone, la filettatura aumenta la portanza laterale e ne aumenta  l'aderenza al terreno, la punta non serve )

Le principali fasi di montaggio :
Dopo aver acquistato i componenti elettronici e meccanici e realizzaro il cubo di legno che ha il compito di alloggiare i tre geofoni si può procedere all'assemblaggio , operazione facile e veloce.
sono necessari ;
1) saldatore a punta fine e stagno per unire i geofoni agli amplificatori , acquistando i geofoni da IdeeGeniali potrete chiedere che essi vengano forniti già saldati agli amplificatori, in tutti i casi è un'operazione semplice e veloce 
2) un cacciavite grande piatto
3) un paio di pinze e una chiave inglese adatta per stringere i bulloni - spike's
4) un cacciavite molto piccolo per stringere le viti di fissaggio del Theremino
5) rondelle in plastica molto piccole per elettronica o in mancanza di esse un rotolo di nastro adesivo.
6) un trapano anche di quelli non elettrici.  
7) punta da trapano di diametro > 1 mm rispetto ai bulloni - spike's usati.

le operazioni sono le seguenti:

fase I - preparazione del cubo
  1. eseguire un buco di diametro maggiore di 1 o più millimetri al centro sul fondo della scatola iniziando dalla parte interna, con qualcosa si appuntito ( una forbice od altro fare una piccola incisione per evitare che il trapano derivi dal centro esatto).
  2. posizionate il cubo e fissarlo provvisoriamente nella scatola tramite il bullone centrale e bloccarlo con rondella e dado. 
  3. Posizionare il cubo appena fissato in modo che i lati rimangano paralleli alla scatola.
  4. La punta del trapano (da 9 mm se si usano bulloni dell' 8 mm ) andrà inserita dei tre buchi verticali del cubo ove verranno posizionati i tre spyke's.
  5. eseguire i tre buchi, al termine di ognuno posizionare un bullone fissandolo con rondella e dado controllando il parallelismo cubo - scatola
  6. Terminata tale operazione svitare i 4 bulloni es estrarre il cubo di legno dalla scatola
  7. Riprendere il cubo , ed inserire nei tre buchi  a partire dall'alto un bullone con rondella, il bullone attraverserà il cubo di legno, dalla parte opposta inserire una seconda rondelle e relativo bullone
  8. il punto 7 andrà ripetuto per gli altri 2 bulloni posti a triangolo
  9. terminata l'operazione 8 stringere con pinza e chiave adatta i tre bulloni in maniera molto forte in modo da garantire il perfetto contatto tra cubo e bulloni. Dalla bontà di questa operazione si permetterà di avere un ottimo  collegamento  cubo - terreno che permetterà di avere risultati ottimali
  10. A questo punto si ha il cubo con i tre piedini verticali
fase II - montaggio parte elettronica
  1. Con il cubo non ancora inserito nella scatola posizionare su una delle due facce del cubo che sarà posizionata sul lato corto della scatola il Theremino
  2. posizionarlo sulla faccia del cubo laterale del cubo a 2 cm dal bordo laterale con la porta usb rivolta verso il centro come da fotografie.
  3. con pennarello o punzone appuntito segnare sul legno la posizione dei 4 buchi posti sul Theremino
  4. nell'area occupata dal Theremino  sul legno è meglio incollare più strisce di nastro isolante incrociate per realizzare una zona isolata elettricamente dal nastro adesivo, meglio usare rondelle di plastica di diametro molto piccolo come  distanziometro e isolante da posizionare su ambo i lati
  5. iniziare ad inserire la prima vite che deve avere un diametro più piccolo del buchi presenti sul Theremino di diametro < = 2 mm lunghezza 1,5  cm
  6. Avvitata la prima vite , controllare il posizionamento del buco spigolo opposto, verificare l'orizzontalità del Theremino rispetto al cubo ed inserire la seconda viete ede eventualmente le relative rondelle in plastica.
  7. completare l'avvitamento delle altre 2 viti. 
  8. nel caso in cui i geofoni sono stati forniti già saldati agli amplificatori saltare questa operazione, nel caso non siano stati salvati con un saldatore saldare ai geofoni un cavetto lungo quanto basta al geofono e l'altro capo saldarlo ai fili rosso - neri dell'amplificatore utilizzando tubi termorestringenti o nastro isolante.
  9. spalmare un velo di cera con l'indice della mano sul fondo di ogni geofono (non usare collanti)
  10. inserire il geofono verticale nel buco corrispondente
  11. inserire gli altri due geofoni 
  12. collegare i connettori  provenienti dagli amplificatori al Theremino come da foto controllando che il filo giallo corrisponda al filare dei pin posizionati nella parte bassa del Theremino  al 1à filare SIG, il filo rosso al filare dei pin  5V, il filo marrone al filare GND ( MASSA)  
  13. canale 1 geofono verticale
  14. canale 2 geofono nord 
  15. canale 3  geofono est 
  16. collegare il cavo USB al Theremino
  17. fare un piccolo intaglio come da foto sul lato a fianco della scatola rospetto a quello ove è posizionato il Theremino, di diametro uguale o inferiore in modo che quando il coperchio è chiuso venga bloccato in maniera stagna 
  18. La cera paraffinata spalmata sul fondo dei geofoni, ad operazione di pre montaggio terminata va messa sulla parte finale del geofono come se fosse ceralacca, non usare collanti colla a caldo troppo esastiche e difficili d staccare per l'ordinaria manutenzione.
fase III - completamento del montaggio

1 inserire con la testa del bullone e relativa rondella nel buco realizzato nel centro della scatola Gewiss o altra, subito all'intero inserire una rondella e relativo dado avvitato quanto basta, in questo modo avremo al centro della scatola un bullone posizionato all'intero verso l'alto.
2 prendere il cubo pre_montato avendo cura che il bullone centrale punto 1 s'infili nel buco centrale del cubo e i tre punzoni coincidano con i tre buchi fatti sul fondo della scatola.
inserire una nuova rondella sotto il dato di bloccaggio a tutti e tre i bulloni collegati al legno
 con il cubo capovolto di 180 " rispetto alla posizione naturale far entrare i tre bulloni con rondella nei tre buchi eseguiti precedentemente sul fondo della scatola
sotto alla scatola rimettere altre tre rondelle e relativi tre dadi di fissaggio scatola - punzoni - cubo stringendo quanto basta.
a completamento  sul bullone uscente dal buco centrale del cubo posizionare l'ultima rondella e dado avvitato quanto basta 



3 Prima di mettere il coperchio inserire nelle tasche tra scatola e cubo in legno gli  amplificatori in posizioni libere, i fili come gli amplificatori possono essere bloccati con pezzetti di spugna per evitare vibrazioni negative in fase di acquisizione, e mettere una stagnola  fissata da una spugna  per schermare il sistema da onde elettromagnetiche (la stagnola) e ridurre al massimo le vibrazioni dei fili ( la spugna)   vedere le foro


4 Controllare il posizionamento dei tre amplificatori e l'assenza di fili volanti  ove il coperchio farà pressione sul bordo della scatola

verificare anche prima di chiudere il regolare posizionamento del cavo Usb da collegare al PC.
5Avvitare le quattro viti poste sul coperchio della scatola

Buona sperimentazione a tutti



La procedura sembra complicata, in realtà è moto semplice se si seguono le operazioni indicate , se vi sono parti mancanti o poco chiare scrivere a dolfrang @ libero.it

Avvertenze da leggere

Si consiglia i primi tempi d'inviare le prove fatte a dolfrang @ libero.it per verificarle ed individuare errori grossolani di montaggio, correlate di foto magari nelle varie fasi di montaggio.

Si fa inoltre presente che sia l'hardware è stato pubblicato online e il software è open source scaricabile è stato fatto con la massima attenzione MA IN TUTTI I CASI NONOSTANTE LE VERIFICHE FATTE POTREBBE ESSERE AFFETTO DA ERRORI pertanto si è pensato di pubblicare gli schemi elettrici ed i listati del software per permettere a tutti in caso di dubbi di verificare il lavoro eseguito; tutti coloro che pensano di aver trovato errori e/o pensano a possibili migliorie possono contattare dolfrang @ libero.it

Non è possibile, vista gratuite LA GRATUITA' del progetto sui risultati ottenuti dare alcuna garanzia, come del resto fanno anche i produttori di strumenti commerciali sia sui risultati ottenuti in quanto oltre a dipendere dall'hardware, dalla meccanica dei geofoni 3d, dipendono anche dai limiti del metodo utilizzato, dalla modalità di elaborazione, dalle condizioni ambientali e stratigrafiche e non ultimo da quelle climatiche e dal software che nonostante i controlli eseguiti potrebbe essere da correggere e migliorare, a tal fine sono stati messi a disposizione opensource i listati del programma di gestione..

Utili sono comparazioni con i dati ottenuti con strumentazioni commerciali al di sotto dei 10 - 20 hz che potranno essere pubblicate.

I risultati possono anche differire in quanto spostandosi di pochi metri le caratteristiche geofisiche possono variare anche di molto, inoltre gli strati superficiali risentono molto delle variazioni geotecniche durante l'arco stagionale annuale e quini si possono avere per le frequenze superficiali piccole variazioni nei picchi.

Si consiglia di iniziare a fare test in zone in cui si conosce la stratigrafia, meglio se disponibili colonne stratigrafiche certe, e con la roccia a profondità tra i 20 e i 50 metri eseguite possibilmente in assenza di traffico e di vento.

Tutti coloro che utilizzano il tromografo sperimentale possono inviare una email a dolfrang @ libero . it per essere avvisati in caso di nuove versioni, nuovi programmi saranno pubblicate anche in geofisica & datalogger e in questo blog che però potrebbero passare inosservate dall'utente che non accede frequentemente a questi liks

E' gradito l'invio di prove in formato *.doc con immagini , elaborazioni grafico descrizione da pubblicare online in maniera anonima o pubblica ( indicare quale delle due opzioni scegliere) grazie per la collaborazione, utile a tale scopo anche


dimensioni del cubo di legno dove inserire i geofoni
cliccare sull'immagine per ingrandirla
Si consiglia di eseguire i fori da mm 9 invece di 7 mm come indicati in disegno. 

cliccare sull'immagin per ingrandirla

Particolari importante

Per permettere il facile recupero dei tre geofoni è utile proseguire i tre buchi da 26 mm di diametro con un foro fa 9 mm fino al lato opposto.
In questo modo, inserendo un tondino di legno, una penna di plastica nel foro sarà facile estrarre la capsula geofonica senza danneggiarla.

Fare il download dello schema inviato dall'amico farosh67 che si ringrazia da fornire al falegname o al fabbro per realizzare il cubo.

SI CONSIGLIA di aumentare il diametro dei fori dei tre spikee's da 7 a 9 mm per usare bulloni da 8mm invece di 7 perchè si ha una maggiore disponibilità di accessori per aumentare la portanza dei tre punzoni,

download del progetto formato pdf
Le misure sono indivative ma non necessariamente devono essere queste, importante che l'asse asse x e y s'incontrino e che il geofono verticalie sia centrato dul punto d'incontro assi x e y.      Nel caso di cubi più piccoli di 10 cm il geofono verticale può essere posto nel quadrante oppozto per esigenze di spazio; in tal caso è necessaria una piastra in alluminio di spessore 1- 2 cm o in ferro spessore 1 cm circa con tre fori per gli sparker's a forma di triangolo nella parte più periferica della piastra che andrà posizionata sotto la scatola e fissata ai tre spikes ( vedere le diverse soluzioni prototipo 4 5 6) .


------------------
domande degli utenti:  verrà presto data una risposta a tutte


la piastra sotto la scatola quali dimensioni deve avere in cm, spessore e peso? 
questa versione di prototipo geofono 3D non prevede l'aggiunta di una piastra, tuttavia è possibile aggiungerla per appesantire il sistema di acquisizione.

La piastra è utile se si opera in ambienti molto ventosi, un maggior peso abbassa il baricentro e appesantendo la struttura ne può migliorare il risultato, è possibile ridurre l'effetto del vento operando su Geopsy.com.
Si consiglia di fare i 3 fori da 26 mm per i geofoni a 0,5 cm dalla parte più alta del cubo di legno, in questo modo si allontanano i geofoni dalla piastra sottostante nel caso dovesse essere aggiunta se necessaria.
La piastra sarà posizionata tra il fondo della scatola e l'ultimo bullone al posto della rondella.
Spessore della piastra in ferro da 8 mm circa.
Peso circa 15 x 14 x 0,8 x 7.7 = 1,2 kg circa che porto il peso totale a 2,5 - 3,0 kg circa
Dimensioni 13 x 14,  con gli stessi buchi applicati al cubo per permettere l'attraversamento su di essa tre bulloni - spike's uscenti cubo di legno e dalla plastica sul fondo della scatola.
In questo modo in caso di vento si potrà aggiungere la piastra - altre possono essere le soluzioni da prendere in caso di vento che saranno descritte in apposita nota pertanto per il momento non si consiglia di realizzare la piastra di appesantimento.

come vi si alloggiano gli spike's ( punzoni) che andranno conficcati / poggiati sul terreno ?
- se il terreno è soffice sarà necessario infiggere nel terreno le punte dei bulloni spike's fino all'inserto filettato -  largo
-se il terreno è duro far ruotare i tre inserti filettati quanto basta e bloccarli con un dado


dove si acquistano i piedi che vanno alloggiati sulla piastra ?

sono normalissimi bulloni - e inserti filettati - in futuro saranno migliorati, non usare i tradizionali spike's perché troppo lunghi,
Aggiungere  inserti filettati che permettono la essa in bolla del sistema, meglio se bloccati da un bullone


la piastra e il cubi come si collegano alla scatola?

La scatola ha sola funzione di protezione dai colpi dei geofoni e dell'hardware;
occorre prima fare un buco al centro della scatola e avvitare il bullone centrale  al cubo ( buco centrale con una rondella e bullone in altro
Fissato il cubo in posizione parallela ai lati della scatola eseguire i tre buchi inserendo la punta del trapano nei fori del cubo per farli nella posizione esatta, quindi imbullonare il tutto 
Per il momento se ne può fare a meno.



Prima d'inserire il cubo nella scatola fare il buco centrale  e i tre buchi per gli spike's

inserire secondo la figura sottostante i 3 bulloni con l'avvertenza di stringere bene il dado.


fissati i ter bulloni al cubo inserire il cubo nella scatola e completando il fissaggio con ulteriore rondella e dado della scatola agli spyke's
inserire altro bullone centrale e relative rondelle dnel buco centrale e bloccare in tutto nella parte alta con rondella e dado.

il cubo di legno in cui si alloggiano i geofoni come si collega alla scatola ed alla piastra?
tramite il bullone centrale e i tre bulloni - spyke's


la figura illustra una sezione schematica della scatola, in verticale il bullone da 12 cm con relative rondelle e dadi di bloccaggio del cubo e della scatola di plastica


il diametro dei fori per alloggiarvi i geofoni quanto deve essere in mm e profondo?

come da disegno allegato fi 26 mm profondi 4 cm


ho letto che i fori dei geofono  vanno fatti passanti per poter permettere estrazione geofono?

Il foro da 26 mm deve essere profondo 4 cm ( geofoni orizzontali ) e va continuato con punta da 8 - 9 mm fino alla faccia opposta del cubo  intercettando il foro del geofono verticale.
Il foro del geofono verticale va prolungato anch'esso fino alla faccia basale del cubo, in questo modo con un utensile di plastica o di legno da 8 mm è possibile estrarre il geofono senza rovinarlo.

come si ferma il geofono nel suo alloggiamento, per semplice incastro o si usa del materiale....credo sia difficile fare buco preciso?
se si usa la fresa da 26 mm rimarrà un piccolo lasco tra buco e geofono ortogonale al moto di vibrazione.
tra le soluzioni adottate la migliore l'aderenza del geofono con il legno è usare la cera utilizzata per  ricoprire ceri formaggi filamentosi, un sottile velo permetterà di fare aderire il geofono al fondo del buco del legno con un effetto coesivo ottimo per ridurre frequenze sopra i 150- 200 hz dannose.
Sul lato frontale  come se fosse ceralacca posizionare al contatto tra i geofoni e il legno tre piccole palline della stessa cera ( vedere foto sottostante).
Si può anche usare cera da candela, stucco , gocce di vinavil, ma la migliore soluzione è la prima , il formaggio sarà un ottimo alimento da mangiare a pranzo....


Nella foto si vedono tre gocce di cera che bloccano il geofono, un velo di cera va steso in fondo al buco; gli amplificatori inguainati nella plastica vanno messi nelle tasche laterali tre cubo e scatola, utile usare frammenti di gomma piuma per evitare possibili vibrazioni.


dalle foto si vede come vengono alloggiati altri componenti elettronici, credo vada chiarita meglio la cosa come per il cavo USB dove va messo? 

gli amplificatori sono protetti  da apposita custodia in plastica vanno posizionate tra le tasche presenti tra cubo e scatola magari fermati da piccoli spezzoni di spugna morbida.
il Theremino va fissato con 4 piccole viti al cubo su un lato in modo che la presa USB sia posta al centro  e lateralmente al cubo (vedere foto precedente) , inserire lo spinotto del cavo USB e farlo uscire da un buco realizzato tra coperchio e bordo laterale della scatola


come si collega la scatola completa al pc ?

il cavo di comunicazione è collegato al Theremino all'interno della scatola, e alla presa USB del pc dalla parte esterna, meglio aggiungere anche un cavo di prolunga di 5 - 15 metri per allontanare dal pc la scatola con i geofoni



nella foto si vede il Theremino fissato al cubo di legno con 2 piccolissime viti
all'uscita del Theremino è collegato il cavo USB da collegare al Pc, 


come si mette in bolla il sistema i piedi son fissi o mobili tali da permettere di metter in bolla il tutto ?

se il terreno è soffice premendo i tre piedini manualmente, se il terreno è duro agendo sugli inserti filettati e bloccati da un dado  una volta che il sistema è orizzontale.
Non occorre grande precisione perché in sistema fase di taratura prima dell'acquisizione si auto livella da solo cia software ( per piccole angolazioni).


dove e quali livelle si può usare per mettere in bolla il sistema ?

due livelle ortogonali lineari o una rotonda acquistabili su ebay, oppure usare la livella della bussola da geologo, prossimamente si potrà usare una bolla virtuale visibile sul pc gestita da un accelerometro 3D oppure usare una delle tante applicazioni per cellulare  sia di bussola che di bolla elettronica virtuale


come vedere sua orientazione rispetto al Nord ?

Usando una bussola, nel menu di gestione si può memorizzare il dato angolare di derivazione dal nord geografico
Per convenzione fare in modo che il lato di uscita del cavo sia il NORD
( veridicare in fase di acquisizione che muovendo leggermente la scatola verticalmente, secondo l'asse NORD -SUD  e EST - OVEST vengano maggiormente eccitai i relativi canali 1,2,3 corrispondenti )


Come devono essere collegati i tre canali e i geofoni ?

er chi acquista sia i geofoni che i tre amplificatori chiedere  ad Ideegeniali.it di saldare i geofoni ai cavi dell'amplificatore , nei geofoni non esiste una polarità precisa importante che vengano collegati tutti e tre i eofoni con la stessa convenzione.




Anche se il software permette di indicare via software la posizione dei geofoni, è consigliabile comunque collegare il geofono verticale al canale 1, il geofono nord al canale 2 e il geofono est al canale 3 se non diversamente prescritto dal software che utilizzate.

come devono essere collegati i cavi provenienti dai geofoni e amplificatori al Theremino ?
i cavi hanno un connettore nero a tre vie, che va collegato
al pin canale 1 il geofono VERTICALE,
al pin canale 2 il geofonoNORD - SUD,
al pin canale 3 geofono EST - OVEST

ATTENZIONE: 
Nella immagine sottostante in basso a sinistra si vedono 6 colonne di pin contraddistinte da canale 1,2,3,4,5,6 e su tre righe di pin: SIG + 5V, GND.
Il connettore collegato al cavo geofoni- amplificatore è collegato con tre cavi di colore:
GIALLO      va collegato al filare SIG   in corrispondenza  al canale 1=VERT. , 2=NORD, 3=EST
ROSSO        va collegato al filare +5 V in corrispondenza al canale 1=VERT. , 2=NORD, 3=EST
MARRONE va collegato al filare GND in corrispondenza  al canale 1=VERT. , 2=NORD, 3=EST
i canali 4,5,6 rimangono liberi per eventualmente collegare un accelerometro o altri sensori


Le 2 immagini sottostanti mostrano come va inserito l'accelerometro che servirà anche come inclinometro virtuale visibile sul monitor del pc per mettere in bolla il sistema
Per il momento se ne può fare a meno non avendo ancora predisposto tale funzione



Il sistema geofono 3D usb completato, nella foto si può vedere che al Theremino oltre ad aver collegato al ch1, ch2, ch3 i tre geofoni, al ch4, ch5, ch6 sono stati collegati anche i tre canali dell'accelerometro.


DOMANDE DA FACEBOOK

  • Giuseppe Cammarata Gli amplificatori così come vengono venduti senza resistore esterno hanno un gain di ...... ?

  • Angelo Dolmetta gli amplificatori lavorano a 10.000 di gain , gai che permette di ottenere ottimi risultati per l'HVSR
    Per misure in ambienti rumorosi, per acquisizioni di sismica attiva o sismologiche è possibile variare il gai da 1 a 10.000 variando il valore della R1 dell'amplificatore.
    per gain da 1,10,100,1000 é possibile mettere un commutatore a 3 vie 4 posizioni, per l'utilizzo a 10000 è meglio non usare commutatori in quanto a tali valori la presenza si più fili, saldature possono interferire sulla qualità del segnale visto l'elevato fattore di gain applicato.
    Il sistema è stato realizzato con tecnica SMD per ridurre al massimo l'interferenza hardware mondo esterno, ogni variazione potrebbe alterare la qualità del segnale.
-------------------------------------

DOMANDA PICCOLI MIGLIORAMENTI APPORTATI AL PROTOTIPO N° 6



PICCOLI MIGLIORAMENTI APPORTATI AL PROTOTIPO N° 6

sono stati apportati due miglioramenti alla meccanica del prototipo sperimentale:


1) All'interno del coperchio compresi i 4 lati laterali è strato rifasciato con stagnola avente il compito di schermate i rumori dalle onde elettromagnetiche ambientali l'hardware e rendere i dati acquisiti privi di disturbi.

La stagnola viene bloccata da una spugna di spessore 1,5 - 2 cm e delle dimensioni esterne del coperchio intagliata ai 4 angoli in corrispondenza delle colonnine di bloccaggio della scatola.

La spugna ha anche il compito di tenere fermi i cavi e tutto ciò che potrebbe essere fonte di piccole vibrazioni, spezzoni di spugna possono anche essere messi tra il cubi e la parente esterna della scatola.

2) Nel caso un cui non è possibile infiggere i tre bulloni spyke's nel terreno, se duro e cementato o roccioso è possibile, utilizzando i bulloni lunghi o gli inserti filettati per allungare quanto basta i piedini e mettere il sistema orizzontale :

Il problema di possibili piccole vibrazioni tra bullone e e dadi lunghi / inserti filettati dovuto al fatto del piccolo gioco esistente tra la parte interna filettata e quella esterna è facilmente risolvibile impregnando la filettatura dei tre bulloni con la stessa cera e paraffina ( o materiale simile) utilizzata per far aderire i geofoni al legno ( ottimo a questo scopo la cera di rivestimento di alcuni formaggi).
La cera riempiendo i lasco tra dado e bulloni lunghi di regolazione impedisce vibrazioni anomali dei due elementi permettendo di avere ottimi risultati.

Spugna con le dimensione esterna del coperchio con 4 intagli di 2 x 2 cm circa

posizionare un foglio di stagnola  sotto il coperchio per schermare le onde elettromagnetiche anche se lo strumento per le sue peculiarità costruttive dell'elettronica non ne è molto soggetto


Inserire la spugna  che oltre ad avere il compito di fissare la stagnola pressa i cavi e tutto quanto si può muovere nella scatola per limitare al massimo le vibrazioni

DOMANDA : ma nel Theremino HVSR gli spikes come si realizzano?
sono rappresentati dalla testa dei bulloni?
e gli inserti filettati per legno che scopo hanno?


RISPOSTA
i bulloni hanno funzione si spyke's,

Se non siamo su terreni soffici vanno posati sul terreno con una debole pressione dopo aver tolto la cotica erbosa radici che ammortizzano il segnale e parte del terreno,
Pressare leggermente il terreno per renderlo costipato quanto basta e pianeggiante , magari utilizzando una piastre e un martello


CONSIGLI UTILI
Iniziata l'acquisizione si consiglia di allontanarsi dal tromografo sperimentale 30 - 50 metri. prendere nota dell'ora in cui terminerà l'acquisizione - ridurre a icola il programma di acquisizione e Hal, 

Antivirus, collegamenti ad internet, programmi attivi, wod processor ecc devono essere chiusi e/o disattivati per avere la massima cpu libera.



PICCOLA CURIOSITA'

Alcuni amici mi hanno chiesto da dove derivava la sigla di DOLFRANG; alcuni hanno ipotizzato che fossero le sigle del cognome, nome mio e di mio figlio, in realtà non è cosi nonostante la coincidenza...

deriva dall'acronimo:

DO = fare
L = local, intesa come rete locale
FR = free, gratuita
A = acquisition, acquisizione
N = network = rete
G = great, grande


"fare una grande rete locale gratuita di acquisizione"

-----------------------------------------------------
se avete altre domande  scrivete a dolfrang@libero.it oppure inseritele  nei commenti di fondo pagina - grazie per la collaborazione




raccomandazioni

Invito tutti coloro che apprezzano il lavoro fin qui svolto a fare una piccola donazione in segno di gratitutine a WWW.Theremino.com

Ottenere i moduli del sistema

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware.
Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”, ma esistono produttori che possono fornire i moduli assemblati e collaudati a un ottimo prezzo. Difficilmente si potrebbe auto-costruirli spendendo meno.

Un elenco dei produttori in questa pagina: www.theremino.com/contacts/producers


Donazioni
  alla THERENINO 

Il codice sorgente dei nostri programmi non contiene note sul copyright, nomi degli autori e link al nostro sito, per cui potete farne ogni uso, senza limitazioni di alcun genere. Non chiediamo di specificare la fonte originale o il nostro sito ma se sarete contenti del nostro software ricordatevi di noi e fate conoscere questo sito ai vostri amici. Eventuali donazioni, anche piccole, sono molto gradite e possono aiutarci a mantenere il software “free” ed a produrne sempre di nuovo.
 

24 BIT reali - DISCK UFO - PROTOTIPO 10

$
0
0

 progetto

  TROMOGRAFO  24 Bit

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware.

Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”,



2° compleanno dell'Ufo


da alcuni anni il gruppo di progettazione  coadiuvato dai numerosi utenti ha sperimentato  diverse tipologie di hardware  partendo dai primi prototipi a 10 Bit realizzati con acquisitore Arduino, per poi passare  al 16 bit che ha dato ottimi risultati amplificato con gain 10.000 con appositi amplificatori fino a giungere  ai prototipi a 24 Bit di ultima generazione

software e schemi hardware online free

RENDERING DEL PROGETTO INIZIALE
(nella versione definitiva la cupola è stata ridotta da H= 8 cm a solo 2 cm , in questo modo si riduce l'effetto vento sulla strumentazione


In figura l'ultima generazione di tromografo sperimentale che rappresenta la risultante  delle sperimentazioni eseguite, sia dal punto di vista elettronico che meccanico è l'UFO ( il nome è legato alla sua forma somigliato agli oggetti volanti denominati  UFO. 


Quali sono i suoi componenti?

1) Master Theremino
2) scheda ADC 24 BIT - 16 CANALI, un adconverter molto molto sensibile con possibilità di amplificare ogni canale con un gain 1, 2, 4, 8, 16, 32, 64, 128 x  per cui il segnale non necessita essere amplificato ulteriormente. ( normalmente i tromografi non sono amplificati)


PC
l

+
THEREMINO master 
+
ADConverter a 24 BIT

+

GEOFONI
=
SISMOGRAFO \ TROMOGRAFO sperimentale 24 bit


L' U F O
La sua forma è dettata da motivi progettuali:

stabilità  
peso 
baricentro ribassato
larga base di appoggio
massima trasmissibilità del segnale ai sensori
aerodinamicità al vento
essenzialità e semplicità nelle sue forme
.......
per ultimo ma non meno importante
l'aspetto gradevole ed innovativo.

L' U F O 
e diventato realtà 
agosto 2017
 con cupola ribassata rispetto al progetto originario 
per avere meno impatto al vento 
e tasche laterali per zavorra e garantire la massima stabilità


Geofoni  utilizzati:

GEOFONI da 4,5 HZ 

( tre capsule geofoniche ) di cui 1 verticale e due orizzontali



la polarità dei geofoni positiva è normalmente 
contrssegnata da un +  da  O


CARATTERISTICHE DEL GEOFONOS S- 4, 5 N
Frequenza naturale (Hz)4,5  < ± 10,0%
Resistenza della bobina ()350 - 400 < ± 10%
Aperto smorzamento del Circuito0,5 -0,7  < ± 10 %
Attenuazione con shunt/
Circuito Aperto Sensibilità Tensione intrinseca (v / m / s)25 / 30 < ± 10 %

Usare geofoni con frequenza propria di 4,5 hz

Non utilizzare geofoni con frequenza propria inferiore a 4,5 hz, più costosi, difficili da settare, molto fragili, possibili derive del segnale con il tempo, che obbligano frequenti ritaraturae del sistema di acquisizione e con un tempo di smorzamento troppo lungo, sia per la strumentazione sperimentale che per quelle professionali.
I Geofoni da 2 hz sono da considerare inutili in quanto aumentano la sensibilità dello strumento ci circa 6 -10 volte , quando lo strumento ha un preamplificatore da 1 a 128 unita.
Per collegare un geofono da  2 hz comporterebbe una inutile riduzione di  8 unità di gain e generare le problematiche sopra accennate  di minor stabilità del sistema nonchè probabili modifiche dell'Hardware theremino.
ATTENZIONE : NON COLLEGARE GEOFONI DA 1 - 2 HZ AL THEREMINO SENZA INTERPELLARE IL PROGETTISTA, SI POTREBBERO PROVOCARE DANNI ALLA STRUMENTAZIONE .
DAL PROGETTO INIZIALE  SI è RIBASSATA LA CUPOLA A 2 CM DI SPESSORE PER RIDURRE ULTERIORMENTE L'IMPATTO DELLO STRUMENTO CON LA BREZZA.









Per chi desidera avere lo strumento montato, provato, con aspetto innovativo con elevata stabilità e basso grado di impatto con il vento è possibile richiederlo a http://www.thereminoshop.com/contact/- To contact the European warehouse: Warehouse European


VISUALIZZARE IL VIDEO DEMO DEL TROMOGRAFO - sondaggi HVR metodo Nakamura _ frequenza di risonanza del terreno, frequenza di risonanza del fabbricato , zonazione sismica.




Caratteristiche del Theremino Adc24
per utilizzo in differenziae
misure microtremori e Sismologia
Per chi vuoe realizzare l'hardware è possibile scaricare gratuitamente i progetti hardware il firware  per programmare il Pic, i listati dei software di acquisizione comprese le sorgenti
Il progett0 è open source e open hardware scaricabile gratuitamente dal sito di Theremino,com


dal sito di www,theremino.com  si legge:

Il Theremino Adc24 è basato sul convertitore AD7124-8 di Analog Devices. 

Si tratta di un convertitore Sigma Delta ad altissime prestazioni, progettato nel 2015, al culmine di decenni di esperienza di Analog Devices in questo campo. Oltre al basso rumore e alla grande flessibilità questo Adc consuma pochissimo, circa 900 micro Ampere. 

La velocità di campionamento è selezionabile in un campo molto vasto (da 10 fino a 19200
campioni al secondo) e sono disponibili 8 livelli di filtraggio, per scegliere il migliore compromesso tra velocità di risposta e riduzione del rumore. Le varie configurazioni di ingresso (Differenziale, Pseudo o Single Ended), permettono di collegare sensori di ogni tipo

Connettività e modularità - L'Adc24 è un modulo compatibile con il sistema Theremino, che è
intrinsecamente modulare e componibile. 
Questo permette di rivalutare le apparecchiature nel tempo e modificarle a piacere, aggiungendo nuovi moduli e nuove funzioni. Software, firmware, schemi e progetti sono completamente gratuiti e Open Source.

Applicazioni - Il Theremino Adc24 è finalizzato alla rilevazione e registrazione di segnali a bassa e media frequenza. La sua flessibilità e il suo rapporto segnale/rumore sono superiori a ogni altro strumento simile. 
Per cui è lo strumento ideale per la registrazione di microtremori (HVSR) e terremoti, ma anche di segnali provenienti da altri trasduttori come: potenziometri lineari per la rilevazione di spostamenti e fratture, celle di carico, bilance analitiche, misuratori di pressione, sensori di flessione, fotodiodi per illuminazioni debolissime, magnetometri, microbarometri, analizzatori di spettro a fenditura, termocoppie, misuratori di pH, datalogger, ecc...

Sincronizzazione - Se richiesta, la sincronizzazione con l'orario UTC si effettua con ricevitore GPS, collegato via USB. Il software che legge l'Adc, legge anche il GPS e unisce i due dati.


specifiche tecniche
Il parametro per poter valutare lo strumento non è il prezzo ma le specifiche che solo pochissime ditte pubblicano sui loro cataloghi
Alimentazione: 5 Vdc
Consumo di energia: < 5 millesimi di Watt (900 uA a 5 Volt)
Numero di canali: Da 1 a 16 canali a 24 bit (Σ-Δ) (8 differenziali, 15 pseudo o 16 single ended)
Range dinamico: 127 dB @ 100 SPS (con tre canali contemporanei e guadagno 1)
Campionamento: Configurabile da 1 a 16 canali “Differenziali”, “Pseudo” o “Single Ended” 
Sampling rate: Da 10 a 19200 campionamenti al secondo
Fondo scala: +/- 3.3 Vpp (Differenziale) oppure da 0 a 3.3 Volt (Pseudo e Single)
Adc step (x 1): 0.4 uV (Differenziale) - 0.2 uV (Pseudo e Single)
Adc step (x 128): 3.2 nV (Differenziale) - 1.6 nV (Pseudo e Single)
Impedenza di input: Praticamente infinita (> 100 mega ohm)

Corrente di input: Inferiore a +/- 4 nA

Corrente di input: Variazione con la temperatura +/-25 pA/°C

Tensione Massima: Da -0.3 Volt a +3.6 Volt (tensione massima applicabile agli ingressi)

Corrente Massima: +/-10 mA (corrente massima applicabile agli ingressi)

ESD Rating HBM: Human Body Model = 4 kVESD 

Rating FICDM: Field-Induced Charged Device Model = 1250 

VESD Rating MM: Machine Model = 400 V

Uscita 3.3 Volt: Fino a 300 mA, accuratezza (1%), stabilità (48 ppm/°C).

Uscita 2.5 Volt: Fino a 10 mA, accuratezza (0.2%), stabilità (2 ppm/°C tipica).

Uscita 1.6 Volt: Solo per polarizzare i sensori (accuratezza e stabilità pari al 3.3 Volt / 2).

Interfaccia dati: SPI a tre fili, QSPI™, MICROWIRE™ e DSP

Formato dati: Protocollo di Analog Devices (vedere data-sheet dello AD7124-8)

Velocità linea seriale: Da 30 baud a 5 mega baud

Precisione di tempo: Circa 500 uS o inferiore 

Temperatura: Da −40°C a +105°C (funzionale)

Temperatura: Da −65°C a +150°C (in magazzino) 

Dimensioni: 60 x 34 x 12 mm



test fornito dal progettista


Manuale theremino adc 24 bit

Conformità: Nessuna certificazione, è un componente quindi non certificabile


Tutto il processo di amplificazione, filtraggio e digitalizzazione avvine nell'adconverter dell'ANALOG DEVICE
per cui le specifiche del sistema  di acquisizione sono indicate nei datascit
dell'adc AD71128-8 della Analog Devices.

Il theremino ha solo lo scopo d'inviare i dati digitali al PC e non influisce in alcun modo sulla qualità del segnale acquisito

Manuale tromografo

$
0
0
Manuale tromografo
dati di acquisizione
durata  taratura (secondi)

Nel menu configurazione del programma di acquisizione è implementato il menu di taratura con la funzione di correggere la non esatta verticalità dello strumento e per i precedenti prototipi tromografi a 16 bit per azzerare l'offset.

Con i tromografi a 24 bit ed Ufo si è potuto sperimentale che l'azzeramento non è necessario il quanto la staratura dell'offset tra i tre canali è praticamente nulla per cui tale funzione ha solo lo scopo di correggere la staratura dovuta alla non perfetta verticalità dello strumento .

1) Nel caso di molto rumore ambientale, esempio nelle vicinanze di una strada ad intenso traffico , zone rumorosi per la vicinanza di fabbriche, motori, pompe vento conviene settare taratura = 0 secondi.
Eseguire l'azzeramento in presenza di rumori ambientali si otterrebbe un offset meno preciso rispetto a quello strumentale rispetto all'errore dovuto dalla non perfetta verticalità dello strumento.


2) Nel caso opposto in siti silenziosi si può attivare la taratura in quanto permette di correggere l'ofset in presenza di non perfetta verticalità strumentale mentre in assenza di rumori antropici e ambientali l'offset Hardware non viene alterato
3) Nei casi intermedi:
caso a con rumori antropici che si ripetono con una ripetibilità; di 10 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
- caso a con rumori antropici che si ripetono con una ripetibilità ; di 20 secondi esempio 2 - 3 auto minuto) consiglio di attivare 20 secondi
Nessun testo alternativo automatico disponibile.
- caso a con rumori antropici che si ripetono con una ripetibilità > di 30 secondi esempio 3 - 4 auto minuto) consiglio di attivare 10 secondi
Per intervalli maggiori usare tempi di taratura più lunghi

Una volta selezionato il tempo accertarsi che che non siano transitando auto persone, raffiche di vento ecc e attivare l'acquisizione, nella fase di taratura è necessario avere lo strumento almeno a 5 m di distanza usando prolunghe Usb e restare immobili fino a quando non è terminata la procedura di taratura, osservato il segnale per qualche secondo, allontanarsi di almeno 20 - 30 metri dallo strumento, prendere l'ora di avvio per prevedere quando l'acquisizione terminerà.
Si consiglia di usare un cavo di prolunga del cavo usb schermato e certificato di ottima qualità  per allontanare lo strumento dal pc di almeno 5-6 metri almeno non usare più di un cavo di prolunga, provare anche con cavi di prolunga da 10 metri.

Una volta avviata la taratura è è possibile allontanarsi di  qualche metro ed osservare il segnale a distanza per ridurre al massimo errori di taratura.

Generare rumori a registrare rumori in fase di taratura potrebbe comportare errori di offset, in tal caso è meglio non eseguire l'operazione mettendo o come durata dell'operazione oppure avviarla in un momento in cui non ci sia traffico veicolare. 

MicroSNAP per il calcolo di lavori quotidiani 2D, 3D

$
0
0
www.bauwesen.hs-magdeburg.de


software free 

S3D - Simple 3D Editor + Programma a elementi finiti MicroSNAP per il calcolo di lavori quotidiani 2D, 3D-lineari e non lineari sotto carichi statici e dinamici
Il software è disponibile gratuitamente per il download di seguito. S3D è stato utilizzato per l'insegnamento e la ricerca dal Prof. Dr.-Ing Detlef Rothe e dal Prof.Dr.-Ing. Th. Schmidt si sviluppa. Siamo grati per qualsiasi suggerimento e suggerimento riguardante il software.




24 BIT reali - DISCK UFO - PROTOTIPO 10

$
0
0

 progetto

  TROMOGRAFO  24 Bit

Il team del sistema Theremino si occupa solo di ricerca e non vende hardware.

Il sistema è completamente “Freeware”, “Open Source”, “No Profit” e “DIY”,



2° compleanno dell'Ufo


da alcuni anni il gruppo di progettazione  coadiuvato dai numerosi utenti ha sperimentato  diverse tipologie di hardware  partendo dai primi prototipi a 10 Bit realizzati con acquisitore Arduino, per poi passare  al 16 bit che ha dato ottimi risultati amplificato con gain 10.000 con appositi amplificatori fino a giungere  ai prototipi a 24 Bit di ultima generazione

software e schemi hardware online free

RENDERING DEL PROGETTO INIZIALE
(nella versione definitiva la cupola è stata ridotta da H= 8 cm a solo 2 cm , in questo modo si riduce l'effetto vento sulla strumentazione


In figura l'ultima generazione di tromografo sperimentale che rappresenta la risultante  delle sperimentazioni eseguite, sia dal punto di vista elettronico che meccanico è l'UFO ( il nome è legato alla sua forma somigliato agli oggetti volanti denominati  UFO. 


Quali sono i suoi componenti?

1) Master Theremino
2) scheda ADC 24 BIT - 16 CANALI, un adconverter molto molto sensibile con possibilità di amplificare ogni canale con un gain 1, 2, 4, 8, 16, 32, 64, 128 x  per cui il segnale non necessita essere amplificato ulteriormente. ( normalmente i tromografi non sono amplificati)


PC
l

+
THEREMINO master 
+
ADConverter a 24 BIT

+

GEOFONI
=
SISMOGRAFO \ TROMOGRAFO sperimentale 24 bit


L' U F O
La sua forma è dettata da motivi progettuali:

stabilità  
peso 
baricentro ribassato
larga base di appoggio
massima trasmissibilità del segnale ai sensori
aerodinamicità al vento
essenzialità e semplicità nelle sue forme
.......
per ultimo ma non meno importante
l'aspetto gradevole ed innovativo.

L' U F O 
e diventato realtà 
agosto 2017
 con cupola ribassata rispetto al progetto originario 
per avere meno impatto al vento 
e tasche laterali per zavorra e garantire la massima stabilità


Geofoni  utilizzati:

GEOFONI da 4,5 HZ 

( tre capsule geofoniche ) di cui 1 verticale e due orizzontali



la polarità dei geofoni positiva è normalmente 
contrssegnata da un +  da  O


CARATTERISTICHE DEL GEOFONOS S- 4, 5 N
Frequenza naturale (Hz)4,5  < ± 10,0%
Resistenza della bobina ()350 - 400 < ± 10%
Aperto smorzamento del Circuito0,5 -0,7  < ± 10 %
Attenuazione con shunt/
Circuito Aperto Sensibilità Tensione intrinseca (v / m / s)25 / 30 < ± 10 %

Usare geofoni con frequenza propria di 4,5 hz

Non utilizzare geofoni con frequenza propria inferiore a 4,5 hz, più costosi, difficili da settare, molto fragili, possibili derive del segnale con il tempo, che obbligano frequenti ritaraturae del sistema di acquisizione e con un tempo di smorzamento troppo lungo, sia per la strumentazione sperimentale che per quelle professionali.
I Geofoni da 2 hz sono da considerare inutili in quanto aumentano la sensibilità dello strumento ci circa 6 -10 volte , quando lo strumento ha un preamplificatore da 1 a 128 unita.
Per collegare un geofono da  2 hz comporterebbe una inutile riduzione di  8 unità di gain e generare le problematiche sopra accennate  di minor stabilità del sistema nonchè probabili modifiche dell'Hardware theremino.
ATTENZIONE : NON COLLEGARE GEOFONI DA 1 - 2 HZ AL THEREMINO SENZA INTERPELLARE IL PROGETTISTA, SI POTREBBERO PROVOCARE DANNI ALLA STRUMENTAZIONE .
DAL PROGETTO INIZIALE  SI è RIBASSATA LA CUPOLA A 2 CM DI SPESSORE PER RIDURRE ULTERIORMENTE L'IMPATTO DELLO STRUMENTO CON LA BREZZA.









Per chi desidera avere lo strumento montato, provato, con aspetto innovativo con elevata stabilità e basso grado di impatto con il vento è possibile richiederlo a http://www.thereminoshop.com/contact/- To contact the European warehouse: Warehouse European


VISUALIZZARE IL VIDEO DEMO DEL TROMOGRAFO - sondaggi HVR metodo Nakamura _ frequenza di risonanza del terreno, frequenza di risonanza del fabbricato , zonazione sismica.




Caratteristiche del Theremino Adc24
per utilizzo in differenziae
misure microtremori e Sismologia
Per chi vuoe realizzare l'hardware è possibile scaricare gratuitamente i progetti hardware il firware  per programmare il Pic, i listati dei software di acquisizione comprese le sorgenti
Il progett0 è open source e open hardware scaricabile gratuitamente dal sito di Theremino,com


dal sito di www,theremino.com  si legge:

Il Theremino Adc24 è basato sul convertitore AD7124-8 di Analog Devices. 

Si tratta di un convertitore Sigma Delta ad altissime prestazioni, progettato nel 2015, al culmine di decenni di esperienza di Analog Devices in questo campo. Oltre al basso rumore e alla grande flessibilità questo Adc consuma pochissimo, circa 900 micro Ampere. 

La velocità di campionamento è selezionabile in un campo molto vasto (da 10 fino a 19200
campioni al secondo) e sono disponibili 8 livelli di filtraggio, per scegliere il migliore compromesso tra velocità di risposta e riduzione del rumore. Le varie configurazioni di ingresso (Differenziale, Pseudo o Single Ended), permettono di collegare sensori di ogni tipo

Connettività e modularità - L'Adc24 è un modulo compatibile con il sistema Theremino, che è
intrinsecamente modulare e componibile. 
Questo permette di rivalutare le apparecchiature nel tempo e modificarle a piacere, aggiungendo nuovi moduli e nuove funzioni. Software, firmware, schemi e progetti sono completamente gratuiti e Open Source.

Applicazioni - Il Theremino Adc24 è finalizzato alla rilevazione e registrazione di segnali a bassa e media frequenza. La sua flessibilità e il suo rapporto segnale/rumore sono superiori a ogni altro strumento simile. 
Per cui è lo strumento ideale per la registrazione di microtremori (HVSR) e terremoti, ma anche di segnali provenienti da altri trasduttori come: potenziometri lineari per la rilevazione di spostamenti e fratture, celle di carico, bilance analitiche, misuratori di pressione, sensori di flessione, fotodiodi per illuminazioni debolissime, magnetometri, microbarometri, analizzatori di spettro a fenditura, termocoppie, misuratori di pH, datalogger, ecc...

Sincronizzazione - Se richiesta, la sincronizzazione con l'orario UTC si effettua con ricevitore GPS, collegato via USB. Il software che legge l'Adc, legge anche il GPS e unisce i due dati.


specifiche tecniche
Il parametro per poter valutare lo strumento non è il prezzo ma le specifiche che solo pochissime ditte pubblicano sui loro cataloghi
Alimentazione: 5 Vdc
Consumo di energia: < 5 millesimi di Watt (900 uA a 5 Volt)
Numero di canali: Da 1 a 16 canali a 24 bit (Σ-Δ) (8 differenziali, 15 pseudo o 16 single ended)
Range dinamico: 127 dB @ 100 SPS (con tre canali contemporanei e guadagno 1)
Campionamento: Configurabile da 1 a 16 canali “Differenziali”, “Pseudo” o “Single Ended” 
Sampling rate: Da 10 a 19200 campionamenti al secondo
Fondo scala: +/- 3.3 Vpp (Differenziale) oppure da 0 a 3.3 Volt (Pseudo e Single)
Adc step (x 1): 0.4 uV (Differenziale) - 0.2 uV (Pseudo e Single)
Adc step (x 128): 3.2 nV (Differenziale) - 1.6 nV (Pseudo e Single)
Impedenza di input: Praticamente infinita (> 100 mega ohm)

Corrente di input: Inferiore a +/- 4 nA

Corrente di input: Variazione con la temperatura +/-25 pA/°C

Tensione Massima: Da -0.3 Volt a +3.6 Volt (tensione massima applicabile agli ingressi)

Corrente Massima: +/-10 mA (corrente massima applicabile agli ingressi)

ESD Rating HBM: Human Body Model = 4 kVESD 

Rating FICDM: Field-Induced Charged Device Model = 1250 

VESD Rating MM: Machine Model = 400 V

Uscita 3.3 Volt: Fino a 300 mA, accuratezza (1%), stabilità (48 ppm/°C).

Uscita 2.5 Volt: Fino a 10 mA, accuratezza (0.2%), stabilità (2 ppm/°C tipica).

Uscita 1.6 Volt: Solo per polarizzare i sensori (accuratezza e stabilità pari al 3.3 Volt / 2).

Interfaccia dati: SPI a tre fili, QSPI™, MICROWIRE™ e DSP

Formato dati: Protocollo di Analog Devices (vedere data-sheet dello AD7124-8)

Velocità linea seriale: Da 30 baud a 5 mega baud

Precisione di tempo: Circa 500 uS o inferiore 

Temperatura: Da −40°C a +105°C (funzionale)

Temperatura: Da −65°C a +150°C (in magazzino) 

Dimensioni: 60 x 34 x 12 mm



test fornito dal progettista


Manuale theremino adc 24 bit

Conformità: Nessuna certificazione, è un componente quindi non certificabile


Tutto il processo di amplificazione, filtraggio e digitalizzazione avvine nell'adconverter dell'ANALOG DEVICE
per cui le specifiche del sistema  di acquisizione sono indicate nei datascit
dell'adc AD71128-8 della Analog Devices.

Il theremino ha solo lo scopo d'inviare i dati digitali al PC e non influisce in alcun modo sulla qualità del segnale acquisito

Article 0

$
0
0

SISMOLOGIA

RETE SISMICA THEREMINO

procedura per pubblicare i drum e i dati 

di DOLQUAKE  ONLINE

si consiglia agli utilizzatori di Dolquache - rete sismica Theremino Dolfrang  di collegare la stazione sismica online per godere di molte funzioni  in fase di realizzzione e di ottimizzazione  fino alla determinazione dell'epicentro dei terremoti registrati.

Per poter fare questo occorre il maggior numero di registrazione possibile di nuove stazioni distribuite  in maniera omogenea su tutto il territorio nazionale.

Come settare il proframma ftp di dolquake

Per caricare i files online non serve nessun programma ftp, ma occorre usare direttamente le funzioni di DOLQUAKE per farlo in maniera semplice e veloce.

1) 
Lanciare il programma: DOLQUAKE
2) Appena avviato il programma si apre la seguente pagina

3) inserire ftp.Host che non ca confuso con l'indirizzo palla pafina web del sito. nel nostro caso  ftp. portoneglia.altervista.org dove  portoneglia è il nome del sito e la restante parte è l'indirizzo del sito che vi fornisce spazio web, nel caso di siti free viene aggiunto il nome di chi vi da lo spazio oltre all'estensione.it  .org  .com  ecc.


4) Per coloro che non hanno espsrienze nel realizare siti consiglio ALTERVISTA, facile da usare gratuito con possibilità di espansioni ed utilizzare ALTER PAGES per gestire il file (facile da utilizzare)

Ricordarsi di mettere il codice ftp (penultima riga del menu si configurazione del programma che va richiesto  a dolfrang@libero.it via email, in questo caso per la stazione dii Imperia Oneglia è MPR01.




Dopo aver fatto l'accesso al sito web che fornisce lo spazio gratuito o a paggamento con le propie credenziali username e password cliccare du Bacheca  e cliccare su gestione files ( ACCEDI )



L'esempio viene fatto con lo spazio fornito da Alrevista.org (gratuito -100 mb )


 

selezionare GESTIONE FILE( immagine sottostante )
e selezionare  la cartella principale[  /   ]  directory principale

 cliccando a fondo pagina il menu crea sottocartella crearele seguenti cartelle online:
alterpages è la cartella gia esistente  nel sito di altrcita del sito
creare quindi tre nuove sottocartelle;
ArchivioDRUM  
ArchivioEVENTI
InfoQuake  



Nella cartella ArchivioDRUM quando sarà avviato il programma  verranno sovrascritti gli ultimi tre drum dell'aggiornamento eseguito in base alla frequenza di aggiornamento della cartela CONFIGURAZIONE del programma dolquakr sul pc remoto.



In questa cartella vengono registrati i file  *.png degli eventi registrari

In questa cartella vengono registrati i file  *.dat   *.saf  degli eventi in forma testuale e numerica.


verificare se nella cartella  c:\ del pc remoto  sia presente  c:\dolquake contenente come sottocartelle ildicate nell'immagine e una seconda cartella c:\dolquake5 contenete i file di configurazione della versione 5.
Nel caso di blocchi si avvio durante le operazioni di una nuova versione si consiglia di cancellare i files  di configurazione contenuti  e riavviare il programma, sarà necessario ricompilare tutti i dati di settaggio del programma di acquisizione dolquake.






PAGINA IN FASE DI COMPLETAMENTO...............
Viewing all 1069 articles
Browse latest View live